

Domain-Driven Design in PHP
Real examples written in PHP showcasing DDD
Architectural Styles, Tactical Design, and Bounded Context
Integration

Carlos Buenosvinos, Christian Soronellas and Keyvan Akbary

This book is for sale at http://leanpub.com/ddd-in-php

This version was published on 2016-06-28

ISBN 978-0-9946084-1-3

This is a Leanpub book. Leanpub empowers authors and publishers with the Lean Publishing
process. Lean Publishing is the act of publishing an in-progress ebook using lightweight tools and
many iterations to get reader feedback, pivot until you have the right book and build traction once
you do.

© 2014 - 2016 Carlos Buenosvinos, Christian Soronellas and Keyvan Akbary

http://leanpub.com/ddd-in-php
http://leanpub.com
http://leanpub.com/manifesto

Tweet This Book!
Please help Carlos Buenosvinos, Christian Soronellas and Keyvan Akbary by spreading the word
about this book on Twitter!

The suggested tweet for this book is:

I just bought “Domain-Driven Design in PHP” (@dddbook) by @theUniC, @keyvanakbary and
@buenosvinos https://leanpub.com/ddd-in-php #ddd #php

The suggested hashtag for this book is #DDDinPHP.

Find out what other people are saying about the book by clicking on this link to search for this
hashtag on Twitter:

https://twitter.com/search?q=#DDDinPHP

http://twitter.com
https://twitter.com/intent/tweet?text=I%20just%20bought%20%E2%80%9CDomain-Driven%20Design%20in%20PHP%E2%80%9D%20(@dddbook)%20by%20@theUniC,%20@keyvanakbary%20and%20@buenosvinos%20https://leanpub.com/ddd-in-php%20%23ddd%20%23php
https://twitter.com/intent/tweet?text=I%20just%20bought%20%E2%80%9CDomain-Driven%20Design%20in%20PHP%E2%80%9D%20(@dddbook)%20by%20@theUniC,%20@keyvanakbary%20and%20@buenosvinos%20https://leanpub.com/ddd-in-php%20%23ddd%20%23php
https://twitter.com/search?q=%23DDDinPHP
https://twitter.com/search?q=%23DDDinPHP

Contents

1. Foreword by Vaughn Vernon . 1

2. Foreword by Matthias Noback . 2

3. Preface . 4
3.1 Who Should Read This Book . 5
3.2 DDD and PHP Community . 6
3.3 Summary of Chapters . 6

3.3.1 Chapter 1: Getting Started with Domain-Driven Design 6
3.3.2 Chapter 2: Architectural Styles . 6
3.3.3 Chapter 3: Value Objects . 6
3.3.4 Chapter 4: Entities . 7
3.3.5 Chapter 5: Domain Services . 7
3.3.6 Chapter 6: Domain Events . 7
3.3.7 Chapter 7: Modules . 7
3.3.8 Chapter 8: Aggregates . 7
3.3.9 Chapter 9: Factories . 7
3.3.10 Chapter 10: Repositories . 8
3.3.11 Chapter 11: Application . 8
3.3.12 Chapter 12: Integrating Bounded Contexts 8
3.3.13 Appendix A: Hexagonal Architecture with PHP 8

3.4 Code and Examples . 8

4. Acknowledgements . 9

5. About the Authors . 11
5.1 Carlos Buenosvinos . 11
5.2 Christian Soronellas . 11
5.3 Keyvan Akbary . 12

6. Value Objects . 13
6.1 Definition . 13
6.2 Value Object vs. Entity . 14
6.3 Currency and Money Example . 14
6.4 Characteristics . 16

CONTENTS

6.4.1 Measures, Quantifies, or Describes . 17
6.4.2 Immutability . 17
6.4.3 Conceptual Whole . 19
6.4.4 Value Equality . 20
6.4.5 Replaceability . 22
6.4.6 Side-Effect-Free Behavior . 22

6.5 Basic Types . 24
6.6 Testing Value Objects . 25
6.7 Persisting Value Objects . 26

6.7.1 Persisting Single Value Objects . 27
6.7.1.1 Embedded Value with an Ad Hoc ORM 28
6.7.1.2 Embedded Value (Embeddables) with Doctrine >= 2.5.* 30
6.7.1.3 Embedded Value with Doctrine <= 2.4.* 33
6.7.1.4 Serialized LOB and Ad Hoc ORM . 36

6.7.1.4.1 Improved Serialization with JMS Serializer 37
6.7.1.5 Serialized LOB with Doctrine . 38

6.7.1.5.1 Doctrine Object Mapping Type 38
6.7.1.5.2 Doctrine Custom Types . 41

6.7.2 Persisting a Collection of Value Objects . 44
6.7.2.1 Collection Serialized into a Single Column 45
6.7.2.2 Collection Backed by a Join Table . 45

6.7.2.2.1 Collection Backed by a Join Table with Doctrine 46
6.7.2.2.2 Collection Backed by a Join Table with an Ad Hoc ORM . . . 50

6.7.2.3 Collection Backed by a Database Entity 50
6.7.3 NoSQL . 51

6.7.3.1 PostgreSQL JSONB and MySQL JSON Type 51
6.8 Security . 51
6.9 Wrap-Up . 52

7. Bibliography . 53

8. Appendix A: Hexagonal Architecture with PHP . 54
8.1 Introduction . 54
8.2 First Approach . 54
8.3 Repositories and the Persistence Edge . 56
8.4 Decoupling Business and Persistence . 59
8.5 Migrating our Persistence to Redis . 60
8.6 Decouple Business and Web Framework . 62
8.7 Rating an idea using the API . 65
8.8 Console app rating . 66
8.9 Testing Rating an Idea UseCase . 68
8.10 Testing Infrastructure . 72
8.11 Arggg, So Many Dependencies! . 74

CONTENTS

8.12 Domain Services and Notification Hexagon Edge 75
8.13 Let’s Recap . 76
8.14 Hexagonal Architecture . 77
8.15 Key Points . 77
8.16 What’s Next? . 77

1. Foreword by Vaughn Vernon
TBW

Vaughn Vernon
Author of Implementing Domain-Driven Design¹ and Domain-Driven Design Distilled²

¹http://www.amazon.com/Implementing-Domain-Driven-Design-Vaughn-Vernon-ebook/dp/B00BCLEBN8
²http://www.amazon.com/Domain-Driven-Design-Distilled-Vaughn-Vernon/dp/0134434420

1

http://www.amazon.com/Implementing-Domain-Driven-Design-Vaughn-Vernon-ebook/dp/B00BCLEBN8
http://www.amazon.com/Domain-Driven-Design-Distilled-Vaughn-Vernon/dp/0134434420
http://www.amazon.com/Implementing-Domain-Driven-Design-Vaughn-Vernon-ebook/dp/B00BCLEBN8
http://www.amazon.com/Domain-Driven-Design-Distilled-Vaughn-Vernon/dp/0134434420

2. Foreword by Matthias Noback
I must admit that when I first heard of the Domain-Driven Design in PHP initiative, I was a bit
worried. The danger was twofold: first of all, when glancing over the table of contents, the subject
matter looked like it was a rehash of content that was already available in several other Domain-
Driven Design books. Second, writing a book on Domain-Driven Design targeted specifically toward
the PHP community seemed needlessly narrowing, particularly as Domain-Driven Design itself
is not language specific. As such, this book might inhibit PHP developers from looking past the
boundaries of their own community, especially when considering that there’s a lot going on beyond
the scope of PHP. In fact, even Domain-Driven Design is one of those things, as it did not originate
in the PHP community.

After reading the book, I’m happy to inform you that my worries have been invalidated!

With regard to my first concern: of course there is some overlap with previously published Domain-
Driven Design books. Yet the authors have restrained themselves. The theoretical parts are exactly
what you need to be able to understand what’s going on in the code samples. Besides, if you never
read another Domain-Driven Design book, this book gives you what you need to start applying
some of its principles and patterns in your code, as it’s practical by nature.

My second concern — about the PHP aspect of this book — has been addressed very well. It turns out
there are a lot of things to say about Domain-Driven Design in a PHP world. This book is specifically
targeted at an audience consisting of PHP developers. The code samples resemble real-world PHP
projects, and they use a programming style we know from projects using Symfony or Silex. For
persisting domain objects, Doctrine ORM — which is the de facto standard data mapper for PHP —
is used.

This book also fulfills a need I’ve often recognized in the PHP community: the need for concrete
examples. For authors, it’s challenging to come up with proper examples of how to apply certain
ideas that have a low risk of being misinterpreted or abused in real-world projects — even more so
in Domain-Driven Design, which is philosophical by nature.

In the case of this book, the authors haven’t been afraid to show many useful examples, along with
some interesting alternative solutions. They aren’t just handwaving at the solution; they take the
time to provide a full disclosure on the subject — for example, when they talk about saving snapshots
for aggregates with a large number of domain events, or when they discuss integrating bounded
contexts using RabbitMQ. I can’t recall having previously seen an implementation of these things
in a book or article on Domain-Driven Design.

For me personally, Domain-Driven Design is one the most interesting subjects in software de-
velopment today. There is so much to discover, and there are many subjects related to it: agile
software development, TDD, and BDD, but also living documentation, visualization, and knowledge
crunching techniques. Once you start looking into all of this, you’ll realize that Domain-Driven

2

Foreword by Matthias Noback 3

Design is an area of expertise worth investigating, as it enables you to add much more to your own
worth as a software developer.

So, I guess what I want to say is this: dive into this book, learn from it, and then pick up another
book (see the list of references at the end of this book for suggestions of future reading). Continuous
learning is a fundamental part of keeping up to date in the software industry, so don’t stop here.

Oh, and by the way: if you get a chance to go to Barcelona, make sure you take part in one of the
many PHP or Symfony events. The community is big, friendly, and full of interesting ideas. You’ll
find the authors of this book there too. They are all invested in the local PHP community and are
happy to share their insights and experiences with you!

Matthias Noback
Author of A Year with Symfony¹

¹https://leanpub.com/a-year-with-symfony

https://leanpub.com/a-year-with-symfony
https://leanpub.com/a-year-with-symfony

3. Preface
In 2014, after two years of reading about and working with Domain-Driven Design, Christian and
Carlos, friends and workmates, traveled to Berlin to participate in Vaughn Vernon’s Implementing
Domain-Driven Design 3-Day Workshop. The training was fantastic, and all the concepts that were
swirling around in their minds suddenly became very real during the trip. However, they were the
only two PHP developers in a room full of Java and .NET ones.

Around the same time, php[tek], an annual PHP conference, opened its call for papers, and Carlos
sent one about Hexagonal Architecture. His talk was rejected, but Eli White — of musketeers.me
and php[architect] fame — got in touch with him a month later wondering if he was interested in
writing an article about Hexagonal Architecture for the magazine php[architect]. So in June 2014,
“Hexagonal Architecture with PHP” was published. That article was the origin of this book. You’ll
find the article included in the appendix.

Carlos has been leading agile teams of between 20 and 100 people since 2006. He’s been a Certified
ScrumMaster since 2010 and has helped many different companies and teams facing the challenge
of writing code that is easy and cheap to maintain. Domain-Driven Design has played a significant
role in his experience of keeping the speed high when dealing with big teams and companies
running multiple products. Alongside Carlos, Christian has worked as Lead Architect for six years
at Emagister and Atrapalo, sharing the same experience of applying and teaching Domain-Driven
Design.

In late 2015, Carlos and Christian talked about extending the article and sharing all their knowledge
and experience of applying Domain-Driven Design in production. They were very excited about
the idea behind the book: helping the PHP community delve into Domain-Driven Design from a
practical approach. At that time, concepts such as Rich Domain Models and Applications that were
framework agnostic were not so common in the PHP community. In December 2015, the first commit
to the GitHub book repository was pushed.

Around the same time, in a parallel universe, Keyvan co-founded Funddy, a crowdfunding platform
for the masses built on top of the concepts and building blocks of Domain-Driven Design. Domain-
Driven Design proved itself effective in the exploratory process and modeling of building an
early-stage startup like Funddy. It also helped handling the complexity of the company, with its
constantly changing environment and requirements. So after connecting and discussing with Carlos
and Christian, Keyvan proudly signed on as the third writer.

Together we’ve written the book we wanted to have when we started with Domain-Driven Design.
It’s full of examples, production-ready code, shortcuts, and our recommendations based on our
experiences of what worked and what didn’t for our respective teams. We arrived at Domain-Driven
Design via its building blocks — Tactical Patterns — which is why this book is mainly about them.
Reading it will help you learn them, write them, and go deep into their implementations. You’ll

4

Preface 5

also discover how to integrate bounded contexts using synchronous and asynchronous approaches,
which will open your world to strategic design — though the latter is a road you’ll have to discover
on your own.

This book is heavily inspired by Implementing Domain-Driven Design¹ by Vaughn Vernon (aka the
Red Book), and Domain-Driven Design: Tackling Complexity in the Heart of Software² by Eric Evans
(aka the Blue Book). You should buy both books. You should read them carefully. You should love
them.

3.1 Who Should Read This Book

This book is highly recommended to PHP Developers, Architects, and Tech Leads. It will help you
become a better professional. It will give you a new overview of and approach to the applications
you’re developing. If you’re a Junior profile, getting into Value Objects, Entities, Repositories, and
Domain Events is really important in order to model any Domain you will face in the future. For an
average profile, understanding the benefits of Hexagonal Architecture and the boundaries between
your framework and your Application is key for writing code that’s easier to maintain in the real
world (framework migrations, testing, etc.). More advanced readers will have fun both exploring
how to use Domain Events in order to integrate applications and getting deeper into Aggregate
design.

Although Domain-Driven Design is not about technology, you still need it to make HTTP requests
to access your Domain. We recommend using specific PHP frameworks and libraries — such as
Symfony, Silex, and Doctrine — throughout the book. For some examples, we also use specific
technologies such as MySQL, RabbitMQ, Redis, and ElasticSearch. However, most important are
the concepts behind the scenes — concepts that are applicable regardless of the technology used
to implement them. We will also encourage you to properly use Domain-Driven Design building
blocks to build PHP applications that can work with different stacks — even at the same time.

The book is also loaded with tons of details and examples, such as how to properly design and
implement all the building blocks of Domain-Driven Design — including Value Objects, Entities,
Services, Domain Events, Aggregates, Factories, Repositories, and Application Services — with
PHP. They explain what the role of the main PHP libraries and frameworks used today (Doctrine,
Symfony, Silex, etc.) in Domain-DrivenDesign are. They teach how to apply Hexagonal Architecture
within your application, regardless of whether you use an open source framework or your own one.
They show how to integrate Bounded Contexts using REST frameworks andmessagingmechanisms.
If you’re interested in any of these subjects, this book is for you.

¹http://www.amazon.com/Implementing-Domain-Driven-Design-Vaughn-Vernon/dp/0321834577
²http://www.amazon.com/Domain-Driven-Design-Tackling-Complexity-Software/dp/0321125215

http://www.amazon.com/Implementing-Domain-Driven-Design-Vaughn-Vernon/dp/0321834577
http://www.amazon.com/Domain-Driven-Design-Tackling-Complexity-Software/dp/0321125215
http://www.amazon.com/Implementing-Domain-Driven-Design-Vaughn-Vernon/dp/0321834577
http://www.amazon.com/Domain-Driven-Design-Tackling-Complexity-Software/dp/0321125215

Preface 6

3.2 DDD and PHP Community

In 2016, Christian and Carlos went to the first official Domain-Driven Design conference, DDD
Europe³. They were really happy to see some PHP open source leaders, such as Marco Pivetta
(Doctrine) and Sebastian Bergmann (PHPUnit), attending the conference.

Two years before that, Domain-Driven Design arrived in the PHP community. However, there is
still a lack of documentation and real code examples. Why? We think not many people have worked
with this kind of approach in production yet — even people in other more established communities
such as Java. Maybe this is because their project complexity is low, or maybe it’s because they don’t
know how to do it. Whatever the reason, this book is written for the community. One of our goals
is to teach you how you can write an Application that solves your Domain issues without getting
coupled to specific frameworks or technologies.

3.3 Summary of Chapters

The book is arranged with each chapter exploring a separate tactical building block of Domain-
Driven Design. It also includes an introduction to Domain-Driven Design, information on how to
integrate different Bounded Contexts or Applications, and some interesting appendixes.

3.3.1 Chapter 1: Getting Started with Domain-Driven Design

What is Domain-Driven Design about? What role does it play in complex systems? Is it worthy?
What are the main concepts a developer needs to know when jumping into it?

3.3.2 Chapter 2: Architectural Styles

Bounded Contexts can be implemented in different ways and using different approaches. However,
two styles are getting more popular, and they are Hexagonal Architecture and CQRS + ES. In this
chapter, we’ll see these two main Architectural Styles, understand what their main strengths are,
and discover when to use them.

3.3.3 Chapter 3: Value Objects

Value Objects are the basic pieces for rich modeling. We’ll learn what their properties are and what
makes them so important. We’ll check how to persist them using Doctrine and custom ORMs. We’ll
show how to properly validate and unit test them. And finally, we’ll see what a test case of testing
immutability looks like.

³http://dddeurope.com/

http://dddeurope.com/
http://dddeurope.com/
http://dddeurope.com/

Preface 7

3.3.4 Chapter 4: Entities

Entities are the Domain-Driven Design building blocks that are uniquely identified and mutable.
We’ll see how to create and validate them and how to properly map them using a custom ORM and
Doctrine. We’ll also access whether or not annotations are the best mapping approach for Entities
and look at the different strategies for generating an identity.

3.3.5 Chapter 5: Domain Services

In this chapter, you’ll learn about what a Domain Service is and when to use it. We’ll review what
Anemic Domain Models and Rich Domain Models are. Lastly, we’ll deal with infrastructure issues
when writing Domain Services.

3.3.6 Chapter 6: Domain Events

Domain Events are a great Inversion of Control (IoC) mechanism. In Domain-Driven Design, they
are important for communicating different Bounded Contexts asynchronously, improving your
Application performance using eventual consistency, and decoupling your Application from its
infrastructure.

3.3.7 Chapter 7: Modules

With so many tactical building blocks, it’s a bit difficult to know where to place them in code,
especially if you are dealing with a framework like Symfony.We’ll review how PHP namespaces can
be used for implementing Modules. We’ll also check different hierarchies of folders for organizing
Domain Model code, Application Code, and Infrastructure code.

3.3.8 Chapter 8: Aggregates

Aggregates are probably the most difficult part of tactical Domain-Driven Design. We’ll look at
the key concepts when dealing with them and discover how to design them. We’ll also propose a
practical scenario where two aggregates become one when adding a business rule and demonstrate
how the rest of the objects must be refactored.

3.3.9 Chapter 9: Factories

Factory methods and objects help us keep business invariants, which is why they’re so important in
Domain-Driven Design. Here, we’ll also check the relation between Factories and Aggregates.

Preface 8

3.3.10 Chapter 10: Repositories

Repositories are key for retrieving and adding Entities and Aggregates to collections. We’ll review
the different types of repositories and learn how to implement them using Doctrine, custom ORMs,
and Redis.

3.3.11 Chapter 11: Application

Application is the thin layer that connects clients from outside to your Domain. In this chapter, we’ll
show you how to write your Application Services so that they’re easy to test and keep thin. We’ll
also review how to prepare request objects, define dependencies, and return results.

3.3.12 Chapter 12: Integrating Bounded Contexts

We’ll explore the different tactical approaches to communicate Bounded Contexts and see real
implementations. REST is our suggestion for synchronous communication, and messaging with
RabbitMQ is our suggestion for asynchronous communication.

3.3.13 Appendix A: Hexagonal Architecture with PHP

Here is where you’ll find the original article written by Carlos and published by php|architect in
June 2014.

3.4 Code and Examples

The authors have created an organization at GitHub called Domain-Driven Design in PHP⁴, which
is where all the code examples from this book, additional snippets, and some complete sample
projects are available. For example, you can find “Last Wishes”⁵, a simple Domain-Driven Design-
style application showing different examples explained in this book. Additionally, you’ll find our
“CQRS Blog”⁶, along with “Gamify”⁷, a Bounded Context that adds gamification capabilities to “Last
Wishes.” Finally, if you find any issue or fix or have a suggestion or comment while reading this
book, you can create an issue in the “DDD in PHP Book Issues”⁸ repository. We fix them as they
come in. If you’re interested, we also urge you to watch those projects and provide feedback.

⁴https://github.com/dddinphp
⁵https://github.com/dddinphp/last-wishes
⁶https://github.com/dddinphp/blog-cqrs
⁷https://github.com/dddinphp/last-wishes-gamify
⁸https://github.com/dddinphp/ddd-in-php-book-issues

https://github.com/dddinphp
https://github.com/dddinphp/last-wishes
https://github.com/dddinphp/blog-cqrs
https://github.com/dddinphp/last-wishes-gamify
https://github.com/dddinphp/ddd-in-php-book-issues
https://github.com/dddinphp
https://github.com/dddinphp/last-wishes
https://github.com/dddinphp/blog-cqrs
https://github.com/dddinphp/last-wishes-gamify
https://github.com/dddinphp/ddd-in-php-book-issues

4. Acknowledgements
First of all, we would like to thank all our friends and family. Without their support, writing this
book would have been an even more difficult task. Thanks for accommodating our schedules and
taking care of our children in order to free up time for us to focus on writing. You are wonderful,
and part of this book is also yours.

We are three Spaniards who wrote a book in English, so if you’d guess our English is far from
perfect, you’d be correct. Luckily for us, Edd Mann has been supporting us with the language since
the beginning. He’s not just a great collaborator but also a great friend, and we owe him a huge
thanks.

A group of PHP developers in Barcelona defends what we call el camino del rigor, or the path of rigor.
It existed before the craftsmanship movement, and it means to struggle with everything stacked
against us in order to build exceptional things in an exceptional way. Two particular developers and
friends from that group are Albert Casademont and Ricard Clau, both of whom are extraordinary
people committed to the community. Thank you so much for helping with the revision process. Your
contributions have been incredibly valuable.

We would like to thank every developer who has worked with us in the companies where we’ve
applied Domain-Driven Design. We know you have been struggling when learning and applying
these concepts. Some of you were not so open-minded at the beginning, but after using the basic
building blocks for a while, you became evangelists. Thanks for your faith.

Our book was for sell from the moment we put the first chapters on Leanpub¹. Early adopters who
bought the book at the beginning gave us the much needed love and support to keep pushing to
get this done. Writing our first book was difficult, but even more difficult was choosing a subject
such as Domain-Driven Design — particularly since all three of us are extremely detail oriented. So
thanks to all the early buyers for the motivation to keep going.

Thanks also to Matthias Noback for his foreword and feedback on the book. The end result is better
because of his contributions.

A special mention to Vaughn Vernon² — not just because his work was an incredible source of
information and inspiration for us, but also because he has helped us find a good publisher, given
us valuable advice, and shared ideas with us. Thanks so much for your help.

Last but not least, we would like to express our gratitude to all the people who have reported issues,
made suggestions, and otherwise contributed to our GitHub repository³. To all of you, thank you.
You have helped us make this book better. More importantly, you’ve helped the community grow

¹https://leanpub.com/ddd-in-php
²https://vaughnvernon.co/
³https://github.com/dddinphp/ddd-in-php-book-issues

9

https://leanpub.com/ddd-in-php
https://vaughnvernon.co/
https://github.com/dddinphp/ddd-in-php-book-issues
https://leanpub.com/ddd-in-php
https://vaughnvernon.co/
https://github.com/dddinphp/ddd-in-php-book-issues

Acknowledgements 10

and helped other developers be better developers. As Robert C. Martin⁴ wrote in his book, Clean
Code: A Handbook of Agile Software Craftsmanship⁵, “You are reading this book for two reasons.
First, you are a programmer. Second, you want to be a better programmer. Good. We need better
programmers.” So thanks to Jordi Abad, JonathanWondrusch, César Rodríguez, Yannick Voyer, Oriol
González, Henry Snoek, Tom Jowitt, Nico Oelgart, Sascha Schimke, Sven Herrmann, Daniel Abad,
Luis Rovirosa, Luis Cordova, Raúl Ramos, Juan Maturana, Nil Portugués, Nikolay Zujev, Fernando
Pradas, Raúl Araya, Neal Brooks, Hubert Béague, Aleksander Rekść, and Marc Aube.

⁴https://twitter.com/unclebobmartin
⁵http://www.amazon.com/Clean-Code-Handbook-Software-Craftsmanship/dp/0132350882

https://twitter.com/unclebobmartin
http://www.amazon.com/Clean-Code-Handbook-Software-Craftsmanship/dp/0132350882
http://www.amazon.com/Clean-Code-Handbook-Software-Craftsmanship/dp/0132350882
https://twitter.com/unclebobmartin
http://www.amazon.com/Clean-Code-Handbook-Software-Craftsmanship/dp/0132350882

5. About the Authors
5.1 Carlos Buenosvinos

Carlos is a PHP Extreme Programmer with more than 15 years of experience developing web
applications and more than 10 years experience as a Tech Lead and CTO leading teams of between
20 and 100 people. He is a Certified ScrumMaster (CSM) and has coached and trained close to two
dozen different companies in Agile practices, both as an employee and as a consultant. On the
technical side, he is a Zend PHP Engineer, a Zend Framework Engineer, and MySQL certified. He
is also a board member of the PHP Barcelona User Group. He has worked in e-commerce (Atrapalo
and eBay), payment processing (Vendo), classifieds (Emagister), and B2B recruiting tools (XING).
He is interested in JavaScript, DevOps, and Scala. He likes developing for mobile, Raspberry Pi, and
games.

• Twitter: @buenosvinos¹
• Web: https://carlosbuenosvinos.com²
• GitHub: https://github.com/carlosbuenosvinos³

5.2 Christian Soronellas

Christian is a passionate Software Developer, Software Journeyman, and CraftsmanApprentice. He’s
an Extreme Programmer soul with more than 10 years of experience in web development. He’s also a
Zend PHP 5.3 Certified Engineer, a Zend Framework Certified Engineer, and a SensioLabs Certified
Symfony Developer. He has worked as a freelancer, as well as at Privalia, Emagister, Atrapalo, and
Enalquiler as a Software Architect.

• Twitter: @theUniC⁴
• GitHub: https://github.com/theUniC⁵

¹https://twitter.com/buenosvinos
²https://carlosbuenosvinos.com
³https://github.com/carlosbuenosvinos
⁴https://twitter.com/theUniC
⁵https://github.com/theUniC

11

https://twitter.com/buenosvinos
https://carlosbuenosvinos.com
https://github.com/carlosbuenosvinos
https://twitter.com/theUniC
https://github.com/theUniC
https://twitter.com/buenosvinos
https://carlosbuenosvinos.com
https://github.com/carlosbuenosvinos
https://twitter.com/theUniC
https://github.com/theUniC

About the Authors 12

5.3 Keyvan Akbary

Keyvan is a polyglot Software Developer who loves Software fundamentals, the Craftsmanship
movement, Extreme Programming, SOLID principles, Clean Code, Design Patterns, and Testing.
He’s also a sporadic Functional Programmer. He understands technology as a medium for providing
value. He has worked on countless projects as a freelancer, on video streaming (Youzee), and on an
online marketplace (MyBuilder) â€” all in addition to founding a crowdfunding company (Funddy).
Currently, Keyvan is working in FinTech as a Lead Developer at TransferWise London.

• Twitter: @keyvanakbary⁶
• Web: http://keyvanakbary.com⁷
• GitHub: https://github.com/keyvanakbary⁸

⁶https://twitter.com/keyvanakbary
⁷http://keyvanakbary.com
⁸https://github.com/keyvanakbary

https://twitter.com/keyvanakbary
http://keyvanakbary.com
https://github.com/keyvanakbary
https://twitter.com/keyvanakbary
http://keyvanakbary.com
https://github.com/keyvanakbary

6. Value Objects
ValueObjects are a fundamental building block of Domain-DrivenDesign, and they’re used tomodel
concepts of your Ubiquitous Language in code. A Value Object is not just a thing in your domain —
it measures, quantifies, or describes something. Value Objects can be seen as small, simple objects —
such as money or a date range — whose equality is not based on identity, but instead on the content
held.

For example, a product price could bemodeled using a Value Object. In this case, it’s not representing
a thing, but instead a value that allows us to measure how much money a product is worth. The
memory footprint for these objects is trivial to determine (calculated by their constituent parts) and
there’s very little overhead. As a result, new instance creation is favored over reference reuse, even
when being used to represent the same value. Equality is then checked based on the comparability
of the fields of both instances.

6.1 Definition

Ward Cunningham defines¹ a Value Object as:

a measure or description of something. Examples of value objects are things like
numbers, dates, monies and strings. Usually, they are small objects which are used quite
widely. Their identity is based on their state rather than on their object identity. This
way, you can have multiple copies of the same conceptual value object. Every $5 note
has its own identity (thanks to its serial number), but the cash economy relies on every
$5 note having the same value as every other $5 note.

Martin Fowler defines² a Value Object as:

a small object such as a Money or date range object. Their key property is that they
follow value semantics rather than reference semantics. You can usually tell them
because their notion of equality isn’t based on identity, instead two value objects are
equal if all their fields are equal. Although all fields are equal, you don’t need to compare
all fields if a subset is unique - for example currency codes for currency objects are
enough to test equality. A general heuristic is that value objects should be entirely
immutable. If you want to change a value object you should replace the object with
a new one and not be allowed to update the values of the value object itself - updatable
value objects lead to aliasing problems.

¹http://c2.com/cgi/wiki?ValueObject
²http://martinfowler.com/bliki/ValueObject.html

13

http://c2.com/cgi/wiki?ValueObject
http://martinfowler.com/bliki/ValueObject.html
http://c2.com/cgi/wiki?ValueObject
http://martinfowler.com/bliki/ValueObject.html

Value Objects 14

Examples of Value Objects are numbers, text strings, dates, times, a person’s full name (composed
of first name, middle name, last name, and title), currencies, colors, phone numbers, and postal
addresses.

Exercise
Try to locate more examples of potential Value Objects in your current Domain.

6.2 Value Object vs. Entity

Consider the following examples from Wikipedia³, in order to better understand the difference
between Value Objects and Entities.

Value Object:

When people exchange dollar bills, they generally do not distinguish between each
unique bill; they only are concerned about the face value of the dollar bill. In this
context, dollar bills are value objects. However, the Federal Reserve may be concerned
about each unique bill; in this context each bill would be an entity.

Entity:

Most airlines distinguish each seat uniquely on every flight. Each seat is an entity in this
context. However, Southwest Airlines, EasyJet and Ryanair do not distinguish between
every seat; all seats are the same. In this context, a seat is actually a value object.

Exercise
Think about the concept of an address (street, number, zip code, etc.). What is a possible
context where an address could be modeled as an Entity and not as a Value Object? Discuss
your findings with a peer.

6.3 Currency and Money Example

Currency and Money Value Objects are probably the most used examples for explaining Value
Objects, thanks to the Money pattern⁴. This design pattern provides a solution to model the problem
in order to avoid a floating-point rounding issue, which in turn allows for deterministic calculations
to be performed.

In the real world, a currency describes monetary units in the same way as meters and yards describe
distance units. Each currency is represented with a three-letter uppercase ISO code:

³http://en.wikipedia.org/wiki/Domain-driven_design#Building_blocks_of_DDD
⁴http://martinfowler.com/eaaCatalog/money.html

http://en.wikipedia.org/wiki/Domain-driven_design#Building_blocks_of_DDD
http://martinfowler.com/eaaCatalog/money.html
http://en.wikipedia.org/wiki/Domain-driven_design#Building_blocks_of_DDD
http://martinfowler.com/eaaCatalog/money.html

Value Objects 15

1 class Currency

2 {

3 private $isoCode;

4

5 public function __construct($anIsoCode)

6 {

7 $this->setIsoCode($anIsoCode);

8 }

9

10 private function setIsoCode($anIsoCode)

11 {

12 if (!preg_match('/^[A-Z]{3}$/', $anIsoCode)) {

13 throw new \InvalidArgumentException();

14 }

15

16 $this->isoCode = $anIsoCode;

17 }

18

19 public function isoCode()

20 {

21 return $this->isoCode;

22 }

23 }

One of themain goals of ValueObjects is also the holy grail of Object-Oriented design: encapsulation.
By following this abstraction, you will end up with a dedicated location to put all the validation,
comparison logic, and behavior for a given concept.

Extra Validations for Currency
In the previous code example, we can build a Currency with an AAA currency ISO code.
That is not valid at all. Write a more specific rule that will check if the ISO Code is valid.
A full list of valid currency ISO codes can be found here⁵. If you need help, take a look at
the Money⁶ packagist library.

Money is used to measure a specific amount of currency. It’s modeled using an amount and a
Currency. Amount, in the case of the Money pattern, is implemented using an integer representation
of the currency’s least-valuable fraction — e.g. in the case of USD or EUR, cents.

As a bonus, you might also notice that we’re using self encapsulation⁷ to set the ISO code, which
centralizes changes in the Value Object itself:

⁵http://www.xe.com/iso4217.php
⁶https://github.com/moneyphp/money
⁷http://martinfowler.com/bliki/SelfEncapsulation.html

http://www.xe.com/iso4217.php
https://github.com/moneyphp/money
http://martinfowler.com/bliki/SelfEncapsulation.html
http://www.xe.com/iso4217.php
https://github.com/moneyphp/money
http://martinfowler.com/bliki/SelfEncapsulation.html

Value Objects 16

1 class Money

2 {

3 private $amount;

4 private $currency;

5

6 public function __construct($anAmount, Currency $aCurrency)

7 {

8 $this->setAmount($anAmount);

9 $this->setCurrency($aCurrency);

10 }

11

12 private function setAmount($anAmount)

13 {

14 $this->amount = (int) $anAmount;

15 }

16

17 private function setCurrency(Currency $aCurrency)

18 {

19 $this->currency = $aCurrency;

20 }

21

22 public function amount()

23 {

24 return $this->amount;

25 }

26

27 public function currency()

28 {

29 return $this->currency;

30 }

31 }

Now that you know the formal definition of Value Objects, let’s dive deeper into some of the
powerful features they offer.

6.4 Characteristics

While modeling an Ubiquitous Languages concept in code, you should always favor Value Objects
over Entities. Value Objects are easier to create, test, use, and maintain.

Keeping this in mind, you can decide whether or not the concept in question can be modeled as a
Value Object if:

Value Objects 17

• It measures, quantifies, or describes a thing in the domain.
• It can be kept immutable.
• It models a conceptual whole by composing related attributes as an integral unit.
• It is completely replaceable when the measurement or description changes.
• It can be compared with others through value equality.
• It supplies its collaborators with side-effect-free behavior.

6.4.1 Measures, Quantifies, or Describes

As discussed before, a Value Object should not be considered just a thing in your Domain. As a
value, it measures, quantifies, or describes a concept in the Domain.

In our example, the Currency object describes what type of money it is. The Money object measures
or quantifies units of a given Currency.

6.4.2 Immutability

This is one of the most important aspects to grasp. Object values should not be able to be altered
over their lifetime. Because of this immutability, Value Objects are easy to reason and test and are
free of undesired/unexpected side effects.

As such, Value Objects should be created through their constructors. In order to build one, you
usually pass the required primitive types or other Value Objects through this constructor. Value
Objects are always in a valid state; that’s why we create them in a single atomic step. Empty
constructors with multiple setters and getters move the creation responsibility to the client, resulting
in the Anemic Domain Model⁸, which is considered an anti-pattern.

It’s also good to point out that it is not recommended to hold references to Entities in your Value
Objects. Entities are mutable, and as such, this could lead to undesirable side effects occurring in
the Value Object.

In languages with method overloading⁹, such as Java, you can create multiple constructors with the
same name. Each of these constructors are provided with different options to build the same type
of resulting object. In PHP, we are able to provide a similar capability by way of factory methods¹⁰.
These specific factorymethods are also known as semantic constructors. Themain goal of fromMoney
is to provide more contextual meaning than the plain constructor. More radical approaches propose
to make the _construct method private and build every instance using a semantic constructor.

In our Money object, we could add some useful factory methods like the following:

⁸http://www.martinfowler.com/bliki/AnemicDomainModel.html
⁹http://en.wikipedia.org/wiki/Function_overloading
¹⁰http://en.wikipedia.org/wiki/Factory_method_pattern

http://www.martinfowler.com/bliki/AnemicDomainModel.html
http://en.wikipedia.org/wiki/Function_overloading
http://en.wikipedia.org/wiki/Factory_method_pattern
http://www.martinfowler.com/bliki/AnemicDomainModel.html
http://en.wikipedia.org/wiki/Function_overloading
http://en.wikipedia.org/wiki/Factory_method_pattern

Value Objects 18

1 class Money

2 {

3 // ...

4

5 public static function fromMoney(Money $aMoney)

6 {

7 return new self(

8 $aMoney->amount(),

9 $aMoney->currency()

10);

11 }

12

13 public static function ofCurrency(Currency $aCurrency)

14 {

15 return new self(0, $aCurrency);

16 }

17 }

By using the self keyword, we do not couple the code with the class name. As such, a change to the
class name or namespace will not affect these factory methods. This small implementation detail
helps when refactoring the code at a later date.

static vs. self
Using static over self can result in undesirable issues when a Value Object inherits from
another Value Object.

Due to this immutability, we must consider how to handle mutable actions that are commonplace
in a stateful context. If we require a state change, we now have to return a brand new Value Object
representation with this change.

If we want to increase the amount of a Money Value Object, for example, we are required to instead
return a new Money instance with the desired modifications. Fortunately, it is relativity simple to
abide by this rule, as shown in the example below:

Value Objects 19

1 class Money

2 {

3 // ...

4

5 public function increaseAmountBy($anAmount)

6 {

7 return new self(

8 $this->amount() + $anAmount,

9 $this->currency()

10);

11 }

12 }

The object returned by increaseAmountBy is different from the one used to invoke the method. This
can be observed in the example comparability checks below:

1 $aMoney = new Money(100, new Currency('USD'));

2 $otherMoney = $aMoney->increaseAmountBy(100);

3

4 var_dump($aMoney === $otherMoney); // bool(false)

5

6 $aMoney = $aMoney->increaseAmountBy(100);

7 var_dump($aMoney === $otherMoney); // bool(false)

6.4.3 Conceptual Whole

So why not just implement something similar to the following example, avoiding the need for a new
Value Object class altogether?

1 class Product

2 {

3 private $id;

4 private $name;

5

6 /**

7 * @var int

8 */

9 private $amount;

10

11 /**

12 * @var string

13 */

Value Objects 20

14 private $currency;

15

16 // ...

17 }

This approach has some noticeable flaws, if say, for example, you want to validate the ISO. It
doesn’t really make sense for the Product to be responsible for the currency’s ISO validation (thus
violating the Single Responsibility Principle). This is highlighted even more so if you want to reuse
the accompanying logic in other parts of your Domain (to abide by the DRY principle).

With these factors in mind, this use case is a perfect candidate for being abstracted out into a Value
Object. Using this abstraction not only gives you the opportunity to group related properties together,
but also to create higher-order concepts and a more concrete Ubiquitous Language.

Exercise
Discuss with a peer if an email could be considered a Value Object or not. Does the context
it is used in matter?

6.4.4 Value Equality

As discussed at the beginning of the chapter, two Value Objects are equal if the content theymeasure,
quantify, or describe is the same.

For example, conceptualize two Money objects representing 1 USD. Can we consider them equal? In
the “real world,” are two bills of 1 USD valued the same? Of course they are. Directing our attention
back to the code, the Value Objects in question refer to separate instances of Money. However, we
can consider them to both represent the same value, so in turn they are equal.

In regards to PHP, it’s commonplace to compare two Value Objects using the == operator. Examining
the PHP documentation¹¹ definition of the operator highlights an interesting behavior:

When using the comparison operator (==), object variables are compared in a simple
manner, namely: Two object instances are equal if they have the same attributes and
values, and are instances of the same class.

This behavior works in agreement with our formal definition of a Value Object. However, as an
exact class match predicate is present, you should be wary when handling sub-typed Value Objects.

With this in mind, the even stricter === operator unfortunately does not help us:

When using the identity operator (===), object variables are identical if and only if they
refer to the same instance of the same class.

The following example should help confirm these subtle differences:

¹¹http://php.net/manual/en/language.oop5.object-comparison.php

http://php.net/manual/en/language.oop5.object-comparison.php
http://php.net/manual/en/language.oop5.object-comparison.php

Value Objects 21

1 $a = new Currency('USD');

2 $b = new Currency('USD');

3

4 var_dump($a == $b); // bool(true)

5 var_dump($a === $b); // bool(false)

6

7 $c = new Currency('EUR');

8

9 var_dump($a == $c); // bool(false)

10 var_dump($a === $c); // bool(false)

A solution is to implement a conventional equals method in each Value Object. This method
is tasked with checking the type and equality of its composite attributes. Abstract data type
comparability is easy to implement using PHP’s built-in type hinting. On the other hand, you can
also use the get_class() function to aid in the comparability check if necessary. The language,
however, is unable to decipher what equality truly means in your domain concept, meaning it is
your responsibility to provide the answer.

In order to compare Currency objects, we just need to confirm that both their associated ISO codes
are the same. The === operator does the job pretty well in this case:

1 class Currency

2 {

3 // ...

4

5 public function equals(Currency $currency)

6 {

7 return $currency->isoCode() === $this->isoCode();

8 }

9 }

Because Money objects use Currency objects, the equalsmethod needs to perform this comparability
check, along with comparing the amounts:

Value Objects 22

1 class Money

2 {

3 // ...

4

5 public function equals(Money $money)

6 {

7 return

8 $money->currency()->equals($this->currency()) &&

9 $money->amount() === $this->amount();

10 }

11 }

6.4.5 Replaceability

Consider a Product Entity that contains a Money Value Object used to quantify its price. Consider
also two Product Entities with an identical price — for example 100 USD. This scenario could be
modeled using two individual Money objects or two references pointing to a single Value Object.

Sharing the same Value Object can be risky; if one is altered, both will reflect the change. This
behavior can be considered an unexpected side effect. For example, if Carlos was hired on February
20, and we know that Christian was also hired on the same day, we may set Christian’s hire date to
be the same instance as Carlos’s. If Carlos then changes themonth of his hire date toMay, Christian’s
hire date changes too. Whether it is correct or not, it is not what people expect.

Due to the problems highlighted in this example, when holding a reference to a Value Object, rather
than modifying its value, it’s recommended instead to replace the object as a whole:

1 $this->price = new Money(100, new Currency('USD'));

2 // ...

3 $this->price = $this->price->increaseAmountBy(200);

This kind of behavior is similar to how basic types such as strings work in PHP. Consider the function
strtolower. It returns a new string rather than modifying the original one. No reference is used;
instead, a new value is returned.

6.4.6 Side-Effect-Free Behavior

If we want to include some additional behavior — like an add method — in our Money class, it feels
natural to check that the input fits any preconditions and maintains any invariance. In our case, we
only wish to add monies with the same currency:

Value Objects 23

1 class Money

2 {

3 // ...

4

5 public function add(Money $money)

6 {

7 if ($money->currency() !== $this->currency()) {

8 throw new \InvalidArgumentException();

9 }

10

11 $this->amount += $money->amount();

12 }

13 }

If the two currencies don’t match, an exception is raised. Otherwise, the amounts are added. How-
ever, this code has some undesirable pitfalls. Now, imagine we have another method, otherMethod:

1 class Banking

2 {

3 public function aMethod()

4 {

5 $aMoney = new Money(100, new Currency('USD'));

6 $this->otherMethod($aMoney);

7 // ...

8 }

9 }

Everything is fine until, for some reason, we start seeing unexpected results in $aMoney. What
happens if otherMethod uses our previously defined add method? Maybe you are unaware that
add mutates the state of the Money instance. This is what we call a side effect. You should never
mutate arguments, as the client never expects this behavior.

So how can we fix this? Simple — by making sure that the Value Object remains immutable, we
avoid this kind of unexpected problem. An easy solution could be returning a new instance for
every potentially mutable operation, which the add method does:

Value Objects 24

1 class Money

2 {

3 // ...

4

5 public function add(Money $money)

6 {

7 if (!$money->currency()->equals($this->currency())) {

8 throw new \InvalidArgumentException();

9 }

10

11 // start-of-new-code-to-take-a-look

12 return new self(

13 $money->amount() + $this->amount(),

14 $this->currency()

15);

16 // end-of-new-code-to-take-a-look

17 }

18 }

With this simple change, immutability is guaranteed. Each time two instances of Money are added
together, a new resulting instance is returned. Other classes can perform any number of changes
without affecting the original copy. Code free of side effects is easy to understand, easy to test, and
less error prone.

6.5 Basic Types

Consider the following code snippet:

1 $a = 10;

2 $b = 10;

3 var_dump($a == $b);

4 // bool(true)

5 var_dump($a === $b);

6 // bool(true)

7 $a = 20;

8 var_dump($a);

9 // integer(20)

10 $a = $a + 30;

11 var_dump($a);

12 // integer(50)

Value Objects 25

Although $a and $b are different variables stored in different memory locations, when compared,
they are the same. They hold the same value, so we consider them equal. You can change the value
of $a from 10 to 20 at any time that you want, making the new value 20 and eliminating the 10.
You can replace integer values as much as you want without consideration of the previous value,
because you are not modifying it; you are just replacing it. If you apply any operation on them,
such as addition (i.e. $a + $b), you get another new value that can be assigned to another variable or
a previously defined one. When you pass $a to another function, except when explicitly passed by
reference, you are passing a value. It doesn’t matter if $a gets modified within that function, because
in your current code, you will still have the original copy. Value Objects behave as basic types.

6.6 Testing Value Objects

Value Objects are tested in the same way normal objects are. However, the immutability and side-
effect-free behavior must be tested too. A solution is to create a copy of the Value Object you are
testing before performing any modifications. Assert both are equal using the implemented equality
check. Perform the actions you want to test and assert the results. Finally, assert that the original
object and copy are still equal. Let’s put this into practice and test the side-effect-free implementation
of our add method in the Money class:

1 class MoneyTest extends \PHPUnit_Test_TestCase

2 {

3 /**

4 * @test

5 */

6 public function copiedMoneyShouldRepresentSameValue()

7 {

8 $aMoney = new Money(100, new Currency('USD'));

9

10 $copiedMoney = Money::fromMoney($aMoney);

11

12 $this->assertTrue($aMoney->equals($copiedMoney));

13 }

14

15 /**

16 * @test

17 */

18 public function originalMoneyShouldNotBeModifiedOnAddition()

19 {

20 $aMoney = new Money(100, new Currency('USD'));

21

22 $aMoney->add(new Money(20, new Currency('USD')));

Value Objects 26

23

24 $this->assertEquals(100, $aMoney->amount());

25 }

26

27 /**

28 * @test

29 */

30 public function moneysShouldBeAdded()

31 {

32 $aMoney = new Money(100, new Currency('USD'));

33

34 $newMoney = $aMoney->add(new Money(20, new Currency('USD')));

35

36 $this->assertEquals(120, $newMoney->amount());

37 }

38

39 // ...

40 }

6.7 Persisting Value Objects

Value Objects are not persisted on their own; they are typically persisted within an Aggregate. Value
Objects should not be persisted as complete records, though that’s an option in some cases. Instead,
it’s best to use Embedded Value or Serialize LOB patterns. Both patterns can be used when persisting
your objects with an open source ORM such as Doctrine, or with a bespoke ORM. As Value Objects
are small, Embedded Value is usually the best choice because it provides an easy way to query
Entities by any of the attributes the Value Object has. However, if querying by those fields is not
important to you, serialize strategies can be very easy to implement.

Consider the following Product Entity with string id, name, and price (Money Value Object)
attributes. We have intentionally decided to simplify this example, with the id being a string and
not a Value Object:

1 class Product

2 {

3 private $productId;

4 private $name;

5 private $price;

6

7 public function __construct(

8 $aProductId,

9 $aName,

Value Objects 27

10 Money $aPrice

11) {

12 $this->setProductId($aProductId);

13 $this->setName($aName);

14 $this->setPrice($aPrice);

15 }

16

17 // ...

18 }

Assuming you have a Repository for persisting Product Entities, an implementation to create and
persist a new Product could look like this:

1 $product = new Product(

2 $productRepository->nextIdentity(),

3 'Domain-Driven Design in PHP',

4 new Money(999, new Currency('USD'))

5);

6

7 $productRepository->persist($product);

Now let’s look at both the ad hoc ORM and the Doctrine implementations that could be used to
persist a Product Entity containing Value Objects.Wewill highlight the application of the Embedded
Value and Serialized LOB patterns, along with the differences between persisting a single Value
Object and a collection of them.

Why Doctrine?
Doctrine¹² is a great ORM. It solves 80 percent of the requirements a PHP application
faces. It has a great community. With a correctly tuned setup, it can perform the same or
even better than a bespoke ORM (without losing maintainability). We recommend using
Doctrine in most cases when dealing with Entities and business logic. It will save you a lot
of time and headaches.

6.7.1 Persisting Single Value Objects

Many different options are available to persist a single Value Object. These range from using
Serialize LOB or Embedded Value as mapping strategies, to using an ad hoc ORM or an open source
alternative, such as Doctrine. We consider an ad hoc ORM to be a custom-built ORM that your

¹²http://www.doctrine-project.org/projects/orm.html

http://www.doctrine-project.org/projects/orm.html
http://www.doctrine-project.org/projects/orm.html

Value Objects 28

company may have developed in order to persist Entities in a database. In our scenario, the ad hoc
ORM code is going to be implemented using the DBAL¹³ library. The Doctrine database abstraction
and access layer (DBAL) offers a lightweight runtime around a PDO-like API, along with additional
features such as database schema introspection and manipulation through an OO API.

6.7.1.1 Embedded Value with an Ad Hoc ORM

If we’re dealing with an ad hoc ORM using the Embedded Value pattern, we need to create a field
in the entity table for each attribute in the Value Object. In this case, two extra columns are needed
when persisting a Product Entity — one for the amount of the Value Object, and one for its currency
ISO code:

1 CREATE TABLE `products` (

2 id INT NOT NULL,

3 name VARCHAR(255) NOT NULL,

4 price_amount INT NOT NULL,

5 price_currency VARCHAR(3) NOT NULL

6) ENGINE=InnoDB DEFAULT CHARSET=utf8mb4 COLLATE=utf8mb4_unicode_ci;

For persisting the Entity in the database, our Repository has to map one-to-one each of the fields of
the Entity and the ones from the Money Value Object. If using an ad hoc ORM Repository based on
DBAL, the DbalProductRepository, you should take care to create the INSERT statement, bind the
parameters, and execute it:

1 class DbalProductRepository extends DbalRepository implements ProductRepository

2 {

3 public function add(Product $aProduct)

4 {

5 $sql = 'INSERT INTO products VALUES (?, ?, ?, ?)';

6 $stmt = $this->connection()->prepare($sql);

7 $stmt->bindValue(1, $aProduct->id());

8 $stmt->bindValue(2, $aProduct->name());

9 $stmt->bindValue(3, $aProduct->price()->amount());

10 $stmt->bindValue(4, $aProduct->price()->currency()->isoCode());

11 $stmt->execute();

12

13 // ...

14 }

15 }

After executing this snippet of code to create a Product Entity and persist it into the database, each
column is filled with the desired information:

¹³http://docs.doctrine-project.org/projects/doctrine-dbal/en/latest/

http://docs.doctrine-project.org/projects/doctrine-dbal/en/latest/
http://docs.doctrine-project.org/projects/doctrine-dbal/en/latest/

Value Objects 29

1 mysql> select * from products \G

2 *************************** 1. row ***************************

3 id: 1

4 name: Domain-Driven Design in PHP

5 price_amount: 999

6 price_currency: USD

7 1 row in set (0.00 sec)

As you can see, you can map your Value Objects and query parameters in an ad hoc manner in order
to persist your Value Objects. However, everything is not as easy as it seems. Let’s try to fetch the
persisted Product with its associated Money Value Object. A common approach would be to execute
a SELECT statement and return a new Entity:

1 class DbalProductRepository extends DbalRepository implements ProductRepository

2 {

3 public function productOfId($anId)

4 {

5 $sql = 'SELECT * FROM products WHERE id = ?';

6 $stmt = $this->connection()->prepare($sql);

7 $stmt->bindValue(1, $anId);

8 $res = $stmt->execute();

9 // ...

10

11 return new Product(

12 $row['id'],

13 $row['name'],

14 new Money(

15 $row['price_amount'],

16 new Currency(

17 $row['price_currency']

18)

19)

20);

21 }

22 }

There are some benefits to this approach. First, you can easily read step-by-step how the persistence
and subsequent creation occur. Second, you can perform queries based on any of the attributes of
the Value Object. Finally, the space required to persist the Entity is just what is required — no more
and no less.

However, using the ad hoc ORM approach has its drawbacks. As explained in the Domain Events
chapter, Entities (in Aggregate form) should fire an Event in the constructor if your Domain is

Value Objects 30

interested in the Aggregates creation. If you use the new operator, you would be firing the event as
many times as the Aggregate is fetched from the database.

This is one of the reasons why Doctrine uses internal proxies and serialize and unserialize

methods to reconstitute an object with its attributes in a specific state without using its constructor.
An Entity should be created with the new operator just once in its lifetime:

Constructors
Constructors don’t need to include a parameter for each attribute in the object. Think about
a blog post. A constructor may need an id and a title; however, internally it can also be
setting its status attribute to draft. When publishing the post, a publish method should be
called in order to alter its status accordingly and set a published date.

If your intention is still to roll out your ownORM, be ready to solve some fundamental problems such
as events, different constructors, Value Objects, lazy load relations, etc. That’s why we recommend
giving Doctrine a try for Domain-Driven Design applications.

Besides, in this instance, you need to create a DbalProduct Entity that extends from the Product

Entity and is able to reconstitute the Entity from the database without using the new operator, instead
using a static factory method.

6.7.1.2 Embedded Value (Embeddables) with Doctrine >= 2.5.*

Doctrine stable release is currently 2.5 and it comes with support for mapping Value Objects, thereby
removing the need to do this yourself as in Doctrine 2.4. Since December 2015, Doctrine has support
for nested embeddables. The support is not 100 percent, but it’s high enough to give it a try. In case it
doesn’t work for your scenario, take a look at the next section. For official documentation, check the
Doctrine Embeddables reference¹⁴. This option, if implemented correctly, is definitely the one that
we most recommend. It would be the simplest, most elegant solution, which also provides search
support in your DQL queries.

Because Product, Money, and Currency classes have already been shown, the only remaining thing
for this alternative is to show the Doctrine mapping files:

¹⁴http://doctrine-orm.readthedocs.org/en/latest/tutorials/embeddables.html

http://doctrine-orm.readthedocs.org/en/latest/tutorials/embeddables.html
http://doctrine-orm.readthedocs.org/en/latest/tutorials/embeddables.html

Value Objects 31

1 <?xml version="1.0" encoding="utf-8"?>

2 <doctrine-mapping

3 xmlns="http://doctrine-project.org/schemas/orm/doctrine-mapping"

4 xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"

5 xsi:schemaLocation="http://doctrine-project.org/schemas/orm/doctrine-mapping

6 https://raw.github.com/doctrine/doctrine2/master/doctrine-mapping.xsd">

7

8 <entity

9 name="Product"

10 table="product">

11 <id

12 name="id"

13 column="id"

14 type="string"

15 length="255">

16 <generator

17 strategy="NONE">

18 </generator>

19 </id>

20

21 <field

22 name="name"

23 type="string"

24 length="255"

25 />

26

27 <embedded

28 name="price"

29 class="Ddd\Domain\Model\Money"

30 />

31 </entity>

32 </doctrine-mapping>

In the productmapping, we are defining price as an instance variable that will hold a Money instance.
At the same time, Money is designed with an amount and a Currency instance:

Value Objects 32

1 <?xml version="1.0" encoding="utf-8"?>

2 <doctrine-mapping

3 xmlns="http://doctrine-project.org/schemas/orm/doctrine-mapping"

4 xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"

5 xsi:schemaLocation="http://doctrine-project.org/schemas/orm/doctrine-mapping

6 https://raw.github.com/doctrine/doctrine2/master/doctrine-mapping.xsd">

7

8 <embeddable

9 name="Ddd\Domain\Model\Money">

10

11 <field

12 name="amount"

13 type="integer"

14 />

15

16 <embedded

17 name="currency"

18 class="Ddd\Domain\Model\Currency"

19 />

20 </embeddable>

21 </doctrine-mapping>

Finally, it’s time to show the Doctrine mapping for our Currency Value Object:

1 <?xml version="1.0" encoding="utf-8"?>

2 <doctrine-mapping

3 xmlns="http://doctrine-project.org/schemas/orm/doctrine-mapping"

4 xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"

5 xsi:schemaLocation="http://doctrine-project.org/schemas/orm/doctrine-mapping

6 https://raw.github.com/doctrine/doctrine2/master/doctrine-mapping.xsd">

7

8 <embeddable

9 name="Ddd\Domain\Model\Currency">

10

11 <field

12 name="iso"

13 type="string"

14 length="3"

15 />

16 </embeddable>

17 </doctrine-mapping>

Value Objects 33

As you can see, it’s a standard embeddable definition with just one string field that holds the ISO
code. This approach is the easiest way to do this and is much more effective. By default, Doctrine
names your columns by prefixing them using the Value Object name. You can change this behavior
to meet your needs by changing the column-prefix attribute in the XML notation.

6.7.1.3 Embedded Value with Doctrine <= 2.4.*

However, if you’re stuck in Doctrine 2.4, what is an acceptable solution for using embedded values
with Doctrine < 2.5? We need to now surrogate all the Value Object attributes in the Product Entity,
which means creating new artificial attributes that will hold the information of the Value Object.
With this in place, we can map all those new attributes using Doctrine. Let’s see what impact this
has on the Product Entity:

1 class Product

2 {

3 private $productId;

4 private $name;

5 private $price;

6

7 // start-of-new-code-to-take-a-look

8 private $surrogateCurrencyIsoCode;

9 private $surrogateAmount;

10 // end-of-new-code-to-take-a-look

11

12 public function __construct($aProductId, $aName, Money $aPrice)

13 {

14 $this->setProductId($aProductId);

15 $this->setName($aName);

16 $this->setPrice($aPrice);

17 }

18

19 private function setPrice(Money $aMoney)

20 {

21 $this->price = $aMoney;

22 // start-of-new-code-to-take-a-look

23 $this->surrogateAmount = $aMoney->amount();

24 $this->surrogateCurrencyIsoCode = $aMoney->currency()->isoCode();

25 // end-of-new-code-to-take-a-look

26 }

27

28 // start-of-new-code-to-take-a-look

29 private function price()

Value Objects 34

30 {

31 if (null === $this->price) {

32 $this->price = new Money(

33 $this->surrogateAmount,

34 new Currency($this->surrogateCurrency)

35);

36 }

37

38 return $this->price;

39 }

40 // end-of-new-code-to-take-a-look

41

42 // ...

43 }

As you can see, there are two new attributes: one for the amount, and another for the ISO code of
the currency. We’ve also updated the setPrice method in order to keep attribute consistency when
setting it. On top of this, we updated the price getter in order to return the Money Value Object built
from the new fields. Let’s see how the corresponding XML Doctrine mapping should be changed:

1 <?xml version="1.0" encoding="utf-8"?>

2 <doctrine-mapping

3 xmlns="http://doctrine-project.org/schemas/orm/doctrine-mapping"

4 xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"

5 xsi:schemaLocation="http://doctrine-project.org/schemas/orm/doctrine-mapping

6 https://raw.github.com/doctrine/doctrine2/master/doctrine-mapping.xsd">

7

8 <entity

9 name="Product"

10 table="product">

11

12 <id

13 name="id"

14 column="id"

15 type="string"

16 length="255">

17 <generator

18 strategy="NONE">

19 </generator>

20 </id>

21

22 <field

Value Objects 35

23 name="name"

24 type="string"

25 length="255"

26 />

27 // start-of-new-code-to-take-a-look

28 <field

29 name="surrogateAmount"

30 type="integer"

31 column="price_amount"

32 />

33 <field

34 name="surrogateCurrencyIsoCode"

35 type="string"

36 column="price_currency"

37 />

38 // end-of-new-code-to-take-a-look

39 </entity>

40 </doctrine-mapping>

Surrogate Attributes
These two new fields don’t strictly belong to the Domain, as they don’t refer to infrastruc-
ture details, rather are a necessity due to the lack of embeddable support in Doctrine. There
are alternatives that can push these two attributes outside the pure Domain; however, this
approach is simpler, easier, and as a tradeoff, acceptable. There is another use of surrogate
attributes in this book; you can find it when surrogating Entity identities.

If we wanted to push these two attributes outside of the Domain, this could be achieved through
the use of an Abstract Factory¹⁵. First, we need to create a new Entity, DoctrineProduct, in our
Infrastructure folder. This Entity will extend from Product Entity. All surrogate fields will be placed
in the new class, and methods such as price or setPrice should be reimplemented. We’ll map
Doctrine to use the new DoctrineProduct as opposed to the Product Entity.

Now we are able to fetch Entities from the database, but what about creating a new Product? At
some point, we’re required to call new Product, but because we need to deal with DoctrineProduct

and we don’t want our Application Services to know about infrastructure details, we’ll need to use
Factories to create Product Entities. So, in every instance where Entity creation occurs with new,
you will instead call createProduct on ProductFactory.

There could be many additional classes required to avoid placing the surrogate attributes in the
original Entity. As such, it’s our recommendation to surrogate all the Value Objects to the same
Entity, though this admittedly leads to a less pure solution.

¹⁵http://en.wikipedia.org/wiki/Abstract_factory_pattern

http://en.wikipedia.org/wiki/Abstract_factory_pattern
http://en.wikipedia.org/wiki/Abstract_factory_pattern

Value Objects 36

6.7.1.4 Serialized LOB and Ad Hoc ORM

If the addition of searching capabilities to the Value Objects attributes is not important, there
is another pattern that can be considered: the Serialized LOB. This pattern works by serializing
the whole Value Object into a string format that can easily be persisted and fetched. The most
significant difference between this solution and the embedded alternative is that in the latter option,
the persistence footprint requirements get reduced to a single column:

1 CREATE TABLE `products` (

2 id INT NOT NULL,

3 name VARCHAR(255) NOT NULL,

4 // start-of-new-code-to-take-a-look

5 price TEXT NOT NULL

6 // end-of-new-code-to-take-a-look

7) ENGINE=InnoDB DEFAULT CHARSET=utf8mb4 COLLATE=utf8mb4_unicode_ci;

In order to persist Product Entities using this approach, a change in the DbalProductRepository is
required. The Money Value Object must be serialized into a string before persisting the final Entity:

1 class DbalProductRepository extends DbalRepository implements ProductRepository

2 {

3 public function add(Product $aProduct)

4 {

5 $sql = 'INSERT INTO products VALUES (?, ?, ?)';

6 $stmt = $this->connection()->prepare($sql);

7 $stmt->bindValue(1, $aProduct->id());

8 $stmt->bindValue(2, $aProduct->name());

9 // start-of-new-code-to-take-a-look

10 $stmt->bindValue(

11 3,

12 $this->serialize(

13 $aProduct->price()

14)

15);

16 // end-of-new-code-to-take-a-look

17

18 // ...

19 }

20

21 private function serialize($object)

22 {

23 return serialize($object);

Value Objects 37

24 }

25 }

Let’s see how our Product is now represented in the database. The table column price is a TEXT

type column that contains a serialization of a Money object representing 9.99 USD:

1 mysql> select * from products \G

2 *************************** 1. row ***************************

3 id: 1

4 name: Domain-Driven Design in PHP

5 price: O:22:"Ddd\Domain\Model\Money":2:{s:30:" Ddd\Domain\Model\Money amount";i:\

6 999;s:32:" Ddd\Domain\Model\Money currency";O:25:"Ddd\Domain\Model\Currency":1:{\

7 s:34:" Ddd\Domain\Model\Currency isoCode";s:3:"USD";}}

8 1 row in set (0.00 sec)

This approach does the job. However, it’s not recommended due to problems occurring when
refactoring classes in your code. Could you imagine the problems if we decided to rename our Money
class? Could you imagine the changes that would be required in our database representation when
moving the Money class from one namespace to another? Another tradeoff, as explained before, is the
lack of querying capabilities. It doesn’t matter whether you use Doctrine or not; writing a query to
get the products cheaper than, say, 200 USD is almost impossible while using a serialization strategy.

The querying issue can only be solved by using Embedded Values. However, the serialization
refactoring problems can be fixed using a specialized library for handling serialization processes.

6.7.1.4.1 Improved Serialization with JMS Serializer

serialize/unserialize native PHP strategies have a problem when dealing with class and
namespace refactoring. One alternative is to use your own serialization mechanism — for example,
concatenating the amount, a one character separator such as “|,” and the currency ISO code. However,
there is another favored approach: using an open source serializer library such as JMS Serializer¹⁶.
Let’s see an example of applying it for serializing a Money object:

¹⁶http://jmsyst.com/libs/serializer

http://jmsyst.com/libs/serializer
http://jmsyst.com/libs/serializer

Value Objects 38

1 $myMoney = new Money(

2 999,

3 new Currency('USD')

4);

5

6 $serializer = JMS\Serializer\SerializerBuilder::create()->build();

7 $jsonData = $serializer->serialize($myMoney, 'json');

In order to unserialize the object, the process is straightforward:

1 $serializer = JMS\Serializer\SerializerBuilder::create()->build();

2 // ...

3 $myMoney = $serializer->deserialize($jsonData, 'Ddd\Domain\Model\Money', 'json');

With this example, you can refactor your Money class without having to update your database. JMS
Serializer can be used in many different scenarios — for example, when working with REST APIs.
An important feature is the ability to specify what attributes of an object should be omitted in the
serialization process — a password, for example.

Check the Mapping Reference¹⁷ and the Cookbook¹⁸ for more information. JMS Serializer is a must
in any Domain-Driven Design project.

6.7.1.5 Serialized LOB with Doctrine

In Doctrine, there are different ways of serializing objects in order to eventually persist them.

6.7.1.5.1 Doctrine Object Mapping Type

Doctrine has support for the Serialize LOB pattern. There are plenty of predefined mapping types
you can use in order to match Entity attributes with database columns or even tables. One of those
mappings is the object type, which maps an SQL CLOB to a PHP object using serialize() and
unserialize().

According to the Doctrine DBAL 2 documentation¹⁹:

Object Type maps and converts object data based on PHP serialization. If you need to
store an exact representation of your object data, you should consider using this type as
it uses serialization to represent an exact copy of your object as string in the database.
Values retrieved from the database are always converted to PHP’s object type using
unserialization or null if no data is present.

¹⁷http://jmsyst.com/libs/serializer/master/reference/xml_reference
¹⁸http://jmsyst.com/libs/serializer/master/cookbook
¹⁹http://doctrine-orm.readthedocs.io/projects/doctrine-dbal/en/latest/reference/types.html#object

http://jmsyst.com/libs/serializer/master/reference/xml_reference
http://jmsyst.com/libs/serializer/master/cookbook
http://doctrine-orm.readthedocs.io/projects/doctrine-dbal/en/latest/reference/types.html#object
http://jmsyst.com/libs/serializer/master/reference/xml_reference
http://jmsyst.com/libs/serializer/master/cookbook
http://doctrine-orm.readthedocs.io/projects/doctrine-dbal/en/latest/reference/types.html#object

Value Objects 39

This type will always be mapped to the database vendor’s text type internally as there
is no way of storing a PHP object representation natively in the database. Furthermore
this type requires a SQL column comment hint so that it can be reverse engineered from
the database. Doctrine cannot correctly map back this type correctly using vendors that
do not support column comments, and will instead fall back to the text type instead.

Because the built-in text type of PostgreSQL does not support NULL bytes, the
object type will result in unserialization errors. A workaround to this problem is to
serialize()/unserialize() and base64_encode()/base64_decode() PHP objects and store
them into a text field manually.

Let’s look at a possible XML mapping for the Product Entity by using the object type:

1 <?xml version="1.0" encoding="utf-8"?>

2 <doctrine-mapping

3 xmlns="http://doctrine-project.org/schemas/orm/doctrine-mapping"

4 xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"

5 xsi:schemaLocation="http://doctrine-project.org/schemas/orm/doctrine-mapping

6 https://raw.github.com/doctrine/doctrine2/master/doctrine-mapping.xsd">

7

8 <entity

9 name="Product"

10 table="products">

11

12 <id

13 name="id"

14 column="id"

15 type="string"

16 length="255">

17 <generator

18 strategy="NONE">

19 </generator>

20 </id>

21

22 <field

23 name="name"

24 type="string"

25 length="255"

26 />

27 // start-of-new-code-to-take-a-look

28 <field

29 name="price"

Value Objects 40

30 type="object"

31 />

32 // end-of-new-code-to-take-a-look

33 </entity>

34 </doctrine-mapping>

The key addition is the type="object" that tells Doctrine that we’re now going to be using an object
mapping. Let’s see how we could create and persist a Product Entity using Doctrine:

1 // ...

2 $em->persist($product);

3 $em->flush($product);

Let’s check that if we now fetch our Product Entity from the database it’s returned in an expected
state:

1 // ...

2 $repository = $em->getRepository('Ddd\\Domain\\Model\\Product');

3 $item = $repository->find(1);

4 var_dump($item);

5

6 /*

7 class Ddd\Domain\Model\Product#177 (3) {

8 private $productId =>

9 int(1)

10 private $name =>

11 string(41) "Domain-Driven Design in PHP"

12 private $money =>

13 class Ddd\Domain\Model\Money#174 (2) {

14 private $amount =>

15 string(3) "100"

16 private $currency =>

17 class Ddd\Domain\Model\Currency#175 (1) {

18 private $isoCode =>

19 string(3) "USD"

20 }

21 }

22 }

23 */

Last but not least, the Doctrine documentation states that:

Value Objects 41

Object types are compared by reference, not by value. Doctrine updates this value if the
reference changes and therefore behaves as if these objects are immutable value objects.

Check the Doctrine Basic Mapping Types reference²⁰ for more information.

This approach suffers from the same refactoring issues as the ad hoc ORM did. The objectmapping
type is internally using serialize/unserialize. What about instead using our own serialization?

6.7.1.5.2 Doctrine Custom Types

Another option is to handle the Value Object persistence using a Doctrine Custom Type. A Custom
Type adds a new mapping type to Doctrine — one that describes a custom transformation between
an Entity field and the database representation to persist it.

As the Doctrine DBAL 2 documentation²¹ explains:

Just redefining how database types are mapped to all the existing Doctrine types is
not at all that useful. You can define your own Doctrine Mapping Types by extending
Doctrine\DBAL\Types\Type. You are required to implement 4 different methods to get
this working.

With the object type, the serialization step includes information, such as the class, which makes it
quite difficult to safely refactor our code. Let’s try to improve on this solution. Think about a custom
serialization process that could solve the problem. One such way could be to persist the Money Value
Object as a string in the database encoded in amount|isoCode format:

1 use Ddd\Domain\Model\Currency;

2 use Ddd\Domain\Model\Money;

3 use Doctrine\DBAL\Types\TextType;

4 use Doctrine\DBAL\Platforms\AbstractPlatform;

5

6 class MoneyType extends TextType

7 {

8 const MONEY = 'money';

9

10 public function convertToPHPValue($value, AbstractPlatform $platform)

11 {

12 $value = parent::convertToPHPValue($value, $platform);

13

14 $value = explode('|', $value);

15 return new Money(

²⁰http://docs.doctrine-project.org/projects/doctrine-orm/en/latest/reference/basic-mapping.html#doctrine-mapping-types
²¹http://doctrine-orm.readthedocs.io/projects/doctrine-dbal/en/latest/reference/types.html#custom-mapping-types

http://docs.doctrine-project.org/projects/doctrine-orm/en/latest/reference/basic-mapping.html#doctrine-mapping-types
http://doctrine-orm.readthedocs.io/projects/doctrine-dbal/en/latest/reference/types.html#custom-mapping-types
http://docs.doctrine-project.org/projects/doctrine-orm/en/latest/reference/basic-mapping.html#doctrine-mapping-types
http://doctrine-orm.readthedocs.io/projects/doctrine-dbal/en/latest/reference/types.html#custom-mapping-types

Value Objects 42

16 $value[0],

17 new Currency($value[1])

18);

19 }

20

21 public function convertToDatabaseValue($value, AbstractPlatform $platform)

22 {

23 return implode(

24 '|',

25 [

26 $value->amount(),

27 $value->currency()->isoCode()

28]

29);

30 }

31

32 public function getName()

33 {

34 return self::MONEY;

35 }

36 }

Using Doctrine, you’re required to register all Custom Types. It’s common to use an EntityMan-

agerFactory that centralizes this EntityManager creation. You could alternatively perform this step
by bootstrapping your application:

1 use Doctrine\DBAL\Types\Type;

2 use Doctrine\ORM\EntityManager;

3 use Doctrine\ORM\Tools\Setup;

4

5 class EntityManagerFactory

6 {

7 public function build()

8 {

9 Type::addType(

10 'money',

11 'Ddd\\Infrastructure\\Persistence\\Doctrine\\Type\\MoneyType'

12);

13

14 return EntityManager::create(

15 [

16 'driver' => 'pdo_mysql',

Value Objects 43

17 'user' => 'root',

18 'password' => '',

19 'dbname' => 'ddd',

20],

21 Setup::createXMLMetadataConfiguration(

22 [__DIR__.'/config'],

23 true

24)

25);

26 }

27 }

Now we need to specify in the mapping that we want to use our Custom Type:

1 <?xml version="1.0" encoding="utf-8"?>

2 <doctrine-mapping>

3

4 <entity

5 name="Product"

6 table="product">

7

8 <!-- ... -->

9 // start-of-new-code-to-take-a-look

10 <field

11 name="price"

12 type="money"

13 />

14 // end-of-new-code-to-take-a-look

15 </entity>

16 </doctrine-mapping>

Why Use XML mapping?
Thanks to the XSD schema validation in the headers of the XML mapping file, most
integrated development environments (IDEs) provide auto-complete functionality for all
the elements and attributes present in the mapping definition. However, in other parts of
the book, we use YAML to show a different syntax.

Let’s check the database to see how the price was persisted using this approach:

Value Objects 44

1 mysql> select * from products \G

2 *************************** 1. row ***************************

3 id: 1

4 name: Domain-Driven Design in PHP

5 price: 999|USD

6 1 row in set (0.00 sec)

This approach is an improvement on the one before in terms of future refactoring. However,
searching capabilities remain limited due to the format of the column. With the Doctrine Custom
types, you can improve the situation a little, but it’s still not the best option for building your DQL
queries. Check the Doctrine Custom Mapping Types reference²² for more information.

Time to Discuss
Think about and discuss with a peer how would you create a Doctrine Custom Type using
JMS to serialize and unserialize a Value Object.

6.7.2 Persisting a Collection of Value Objects

Imagine that now we would like to add a collection of prices to be persisted to our Product Entity.
These prices could represent the different prices the product has borne throughout its lifetime or the
product price in different currencies. This could be named HistoricalPrice, as shown below:

1 class HistoricalProduct extends Product

2 {

3 /**

4 * @var Money[]

5 */

6 protected $prices;

7

8 public function __construct($aProductId, $aName, Money $aPrice, array $someP\

9 rices)

10 {

11 parent::__construct($aProductId, $aName, $aPrice);

12 $this->setPrices($somePrices);

13 }

14

15 private function setPrices(array $somePrices)

16 {

²²http://doctrine-orm.readthedocs.org/en/latest/cookbook/custom-mapping-types.html

http://doctrine-orm.readthedocs.org/en/latest/cookbook/custom-mapping-types.html
http://doctrine-orm.readthedocs.org/en/latest/cookbook/custom-mapping-types.html

Value Objects 45

17 $this->prices = $somePrices;

18 }

19

20 public function prices()

21 {

22 return $this->prices;

23 }

24 }

HistoricalProduct extends from Product, so it inherits the same behavior, plus the price collection
functionality.

As in the previous sections, serialization is a plausible approach if you don’t care about querying
capabilities. However, Embedded Values should be a possibility if we know exactly howmany prices
we want to persist. But what happens if we want to persist an undetermined collection of historical
prices?

6.7.2.1 Collection Serialized into a Single Column

Serializing a collection of Value Objects into a single column is most likely the easiest solution.
Everything that has previously been discussed through persisting a single Value Object applies
in this situation. With Doctrine, you can use an Object or Custom Type — with some additional
considerations to bear in mind: Value Objects should be small in size, but if you wish to persist a
large collection, be sure to consider the maximum column length and the maximum row width that
your database engine can handle.

Exercise
Think up both Doctrine Object Type and Doctrine Custom Type implementation strategies
for persisting a Product with different prices.

6.7.2.2 Collection Backed by a Join Table

In case you want to persist and query an Entity by its related Value Objects, you have the choice
to persist the Value Objects as Entities. In terms of the Domain, those objects would still be Value
Objects, but we will need to give them an id and set them up with a “one-to-many”/”one-to-one”
relation with the owner, a real Entity. To summarize, your ORM handles the collection of Value
Objects as Entities, but in your Domain, they are still treated as Value Objects.

The main idea behind the “Join Table” strategy is to create a table that connects the owner Entity
and its Value Objects. Let’s see a database representation:

Value Objects 46

1 CREATE TABLE `historical_products` (

2 `id` varchar(255) COLLATE utf8mb4_unicode_ci NOT NULL,

3 `name` varchar(255) COLLATE utf8mb4_unicode_ci NOT NULL,

4 `price_amount` int(11) NOT NULL,

5 `price_currency` varchar(255) COLLATE utf8mb4_unicode_ci NOT NULL,

6 PRIMARY KEY (`id`)

7) ENGINE=InnoDB DEFAULT CHARSET=utf8mb4 COLLATE=utf8mb4_unicode_ci;

The historical_products table will look the same as products. Remember that HistoricalProduct
extends Product Entity in order to easily show how to deal with persisting an collection. A new
prices table is now required in order to persist all the different Money Value Objects that a Product
Entity can handle:

1 CREATE TABLE `prices` (

2 `id` int(11) NOT NULL AUTO_INCREMENT,

3 `amount` int(11) NOT NULL,

4 `currency` varchar(255) COLLATE utf8mb4_unicode_ci NOT NULL,

5 PRIMARY KEY (`id`)

6) ENGINE=InnoDB DEFAULT CHARSET=utf8mb4 COLLATE=utf8mb4_unicode_ci;

Finally, a table that relates products and prices is needed:

1 CREATE TABLE `products_prices` (

2 `product_id` varchar(255) COLLATE utf8mb4_unicode_ci NOT NULL,

3 `price_id` int(11) NOT NULL,

4 PRIMARY KEY (`product_id`,`price_id`),

5 UNIQUE KEY `UNIQ_62F8E673D614C7E7` (`price_id`),

6 KEY `IDX_62F8E6734584665A` (`product_id`),

7 CONSTRAINT `FK_62F8E6734584665A` FOREIGN KEY (`product_id`) REFERENCES `histor\

8 ical_products` (`id`),

9 CONSTRAINT `FK_62F8E673D614C7E7` FOREIGN KEY (`price_id`) REFERENCES `prices` \

10 (`id`)

11) ENGINE=InnoDB DEFAULT CHARSET=utf8mb4 COLLATE=utf8mb4_unicode_ci;

6.7.2.2.1 Collection Backed by a Join Table with Doctrine

Doctrine requires that all database Entities have a unique identity. Because we want to persist Money
Value Objects, we need to then add an artificial identity so Doctrine can handle its persistence.
There are two options: including the surrogate identity in the Money Value Object, or placing it in
an extended class.

The issuewith the first option is that the new identity is only required due to theDatabase persistence
layer. This identity is not part of the Domain.

Value Objects 47

An issue with the second option is the amount of alterations that are required in order to avoid
this said boundary leak. With a class extension, creating new instances of the Money Value Object
class from any Domain Object is not recommended, as it would break the Inversion Principle. The
solution is to again create a Money Factory that would need to be passed into Application Services
and any other Domain Objects.

In this scenario, we recommend using the first option. Let’s review the changes required to
implement it in the Money Value Object:

1 class Money

2 {

3 private $amount;

4 private $currency;

5

6 // start-of-new-code-to-take-a-look

7 private $surrogateId;

8 private $surrogateCurrencyIsoCode;

9 // end-of-new-code-to-take-a-look

10

11 public function __construct($amount, Currency $currency)

12 {

13 $this->setAmount($amount);

14 $this->setCurrency($currency);

15 }

16

17 private function setAmount($amount)

18 {

19 $this->amount = $amount;

20 }

21

22 private function setCurrency(Currency $currency)

23 {

24 $this->currency = $currency;

25 // start-of-new-code-to-take-a-look

26 $this->surrogateCurrencyIsoCode = $currency->isoCode();

27 // end-of-new-code-to-take-a-look

28 }

29

30 public function currency()

31 {

32 // start-of-new-code-to-take-a-look

33 if (null === $this->currency) {

34 $this->currency = new Currency($this->surrogateCurrencyIsoCode);

Value Objects 48

35 }

36 // end-of-new-code-to-take-a-look

37

38 return $this->currency;

39 }

40

41 public function amount()

42 {

43 return $this->amount;

44 }

45

46 public function equals(Money $aMoney)

47 {

48 return

49 $this->amount() === $aMoney->amount()

50 && $this->currency()->equals($this->currency());

51 }

52 }

As seen above, two new attributes have been added. The first one, surrogateId, is not used by our
Domain, but it’s required for the persistence infrastructure to persist this Value Object as an Entity
in our Database. The second one, surrogateCurrencyIsoCode, holds the ISO code for the currency.
Using these new attributes, it’s really easy to map our Value Object with Doctrine.

The Money mapping is quite straightforward:

1 <?xml version="1.0" encoding="utf-8"?>

2 <doctrine-mapping

3 xmlns="http://doctrine-project.org/schemas/orm/doctrine-mapping"

4 xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"

5 xsi:schemaLocation="http://doctrine-project.org/schemas/orm/doctrine-mapping

6 https://raw.github.com/doctrine/doctrine2/master/doctrine-mapping.xsd">

7

8 <entity

9 name="Ddd\Domain\Model\Money"

10 table="prices">

11

12 <id

13 name="surrogateId"

14 type="integer"

15 column="id">

16 <generator

17 strategy="AUTO">

Value Objects 49

18 </generator>

19 </id>

20

21 <field

22 name="amount"

23 type="integer"

24 column="amount"

25 />

26 <field

27 name="surrogateCurrencyIsoCode"

28 type="string"

29 column="currency"

30 />

31 </entity>

32 </doctrine-mapping>

Using Doctrine, the HistoricalProduct Entity would have following mapping:

1 <?xml version="1.0" encoding="utf-8"?>

2 <doctrine-mapping

3 xmlns="http://doctrine-project.org/schemas/orm/doctrine-mapping"

4 xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"

5 xsi:schemaLocation="http://doctrine-project.org/schemas/orm/doctrine-mapping

6 https://raw.github.com/doctrine/doctrine2/master/doctrine-mapping.xsd">

7

8 <entity

9 name="Ddd\Domain\Model\HistoricalProduct"

10 table="historical_products"

11 repository-class="Ddd\Infrastructure\Domain\Model\DoctrineHistoricalProd\

12 uctRepository">

13

14 <many-to-many

15 field="prices"

16 target-entity="Ddd\Domain\Model\Money">

17

18 <cascade>

19 <cascade-all/>

20 </cascade>

21

22 <join-table

23 name="products_prices">

24

Value Objects 50

25 <join-columns>

26 <join-column

27 name="product_id"

28 referenced-column-name="id"

29 />

30 </join-columns>

31

32 <inverse-join-columns>

33 <join-column

34 name="price_id"

35 referenced-column-name="id"

36 unique="true"

37 />

38 </inverse-join-columns>

39 </join-table>

40 </many-to-many>

41 </entity>

42 </doctrine-mapping>

6.7.2.2.2 Collection Backed by a Join Table with an Ad Hoc ORM

It’s possible to do the same with an ad hoc ORM, where Cascade INSERTS and JOIN queries are
required. The only consideration to be careful about is how the removal of Value Objects is handled,
in order to not leave orphan Money Value Objects.

Exercise
Think up a solution for DbalHistoricalRepository that would handle the persist

method.

6.7.2.3 Collection Backed by a Database Entity

“Database Entity” is the same strategy as “Join Table,” with the addition of the Value Object that is
only managed by the owner Entity. In the current scenario, consider that the Money Value Object is
only used by the HistoricalProduct Entity; a “Join Table” would be overly complex. So the same
result could be achieved using a “one-to-many” database relation.

Exercise
Think of the mapping required between HistoricalProduct and Money if a “Database
Entity” approach is used.

Value Objects 51

6.7.3 NoSQL

What about NoSQL mechanisms such as Redis, MongoDB, or CouchDB? Unfortunately you don’t
escape from these problems. In order to persist an Aggregate using Redis, you need to serialize it
into a string before setting the value. If you use PHP serialize/unserializemethods, you will face
namespace or class name refactoring issues again. If you choose to serialize in a custom way (JSON,
custom string, etc.), you’ll be required to again rebuild the Value Object during Redis retrieval.

6.7.3.1 PostgreSQL JSONB and MySQL JSON Type

If our database engine would allow us to not only use the Serialized LOB strategy but also search
based on its value, wewould have the best of both approaches.Well, good news: now you can do this.
As of PostgreSQL version 9.4, support for JSONB²³ has been added. Value Objects can be persisted
as JSON serializations and subsequently queried within this JSON serialization.

MySQL has done the same. As of MySQL 5.7.8, MySQL supports a native JSON data type that
enables efficient access to data in JSON (JavaScript Object Notation) documents. The JSON data
type provides these advantages over storing JSON-format strings in a string column:

• Automatic validation of JSON documents stored in JSON columns. Invalid documents produce
an error.

• Optimized storage format. JSON documents stored in JSON columns are converted to an
internal format that permits quick read access to document elements. When the server later
must read a JSON value stored in this binary format, the value need not be parsed from a text
representation. The binary format is structured to enable the server to look up subobjects or
nested values directly by key or array index without reading all values before or after them
in the document.

If Relational Databases add support for document and nested document searches with high
performance and with all the benefits of an ACID (Atomicity, Consistency, Isolation, Durability)
philosophy, it could save a lot of complexity in many projects.

6.8 Security

Another interesting detail of modeling your Domain concepts using Value Objects is regarding its
security benefits. Consider an application within the context of selling flight tickets. If you deal with
International Air Transport Association airport codes, also known as IATA codes²⁴, you can decide
to use a string or model the concept using a Value Object. If you choose to go with the string, think
about all the places where you will be checking that the string is a valid IATA code. What’s the

²³http://www.postgresql.org/docs/9.4/static/functions-json.html
²⁴https://en.wikipedia.org/wiki/International_Air_Transport_Association_airport_code

http://www.postgresql.org/docs/9.4/static/functions-json.html
https://en.wikipedia.org/wiki/International_Air_Transport_Association_airport_code
http://www.postgresql.org/docs/9.4/static/functions-json.html
https://en.wikipedia.org/wiki/International_Air_Transport_Association_airport_code

Value Objects 52

chance you forget anywhere important? On the other hand, think about trying to instantiate new

IATA("BCN'; DROP TABLE users;--"). If you centralize the guards²⁵ in the constructor and then
pass an IATA Value Object into your model, avoiding SQL Injections or similar attacks gets easier.

If you want to know more about the security side of Domain-Driven Design, you can follow Dan
Bergh Johnsson²⁶ or read his blog²⁷.

6.9 Wrap-Up

Using Value Objects for modeling concepts in your Domain that measure, quantify, or describe is
highly recommended. As shown, Value Objects are easy to create, maintain, and test. In order to
handle persistence within a Domain-Driven Design application, using an ORM is a must. However,
in order to persist Value Objects using Doctrine, the preferred way is using embedabbles. In case
you are stuck in version 2.4, there are two options: adding the Value Object fields directly into your
Entity and mapping them (less elegant, but easier), or extending your Entities (far more elegant, but
more complex).

²⁵https://en.wikipedia.org/wiki/Guard_(computer_science)
²⁶https://twitter.com/danbjson
²⁷http://dearjunior.blogspot.com.es/search/label/domain%20driven%20security

https://en.wikipedia.org/wiki/Guard_(computer_science)
https://twitter.com/danbjson
https://twitter.com/danbjson
http://dearjunior.blogspot.com.es/search/label/domain%20driven%20security
https://en.wikipedia.org/wiki/Guard_(computer_science)
https://twitter.com/danbjson
http://dearjunior.blogspot.com.es/search/label/domain%20driven%20security

7. Bibliography
Brandolini, Alberto. 2016 Introducing EventStorming¹. Leanpub.

Vernon, Vaughn. 2016 Domain-Driven Design Distilled². Addison-Wesley Professional.

Newman, Sam. 2015. Building Microservices³. O’Reilly Media.

Evans, Eric. 2014. Domain-Driven Design Reference⁴. Dog Ear Publishing.

Vernon, Vaughn. 2013. Implementing Domain-Driven Design⁵. Addison-Wesley Professional.

Hohpe, Gregor and Bobby Woolf. 2012. Enterprise Integration Patterns⁶. Addison-Wesley Profes-
sional.

Fowler, Martin and Pramod J. Sadalage. 2012. NoSQL Distilled⁷. Addison-Wesley Professional.

C. Martin, Robert. 2008. Clean Code⁸. Prentice Hall.

Meszaros, Gerard. 2007. xUnit Test Patterns: Refactoring Test Code⁹. Addison-Wesley Professional.

Nilson, Jimmy. 2006. Applying Domain-Driven Design¹⁰. Addison-Wesley Professional.

Evans, Eric. 2003. Domain-Driven Design¹¹. Addison-Wesley Professional.

Fowler, Martin. 2002. Patterns of Enterprise Application Architecture¹². Addison-Wesley Profes-
sional.

C. Martin, Robert. 2002. Agile Software Development¹³. Pearson.

Beck, Kent. 2002. Test Driven Development by Example¹⁴. Addison-Wesley Professional.

¹https://leanpub.com/introducing_eventstorming
²http://www.amazon.com/Domain-Driven-Design-Distilled-Vaughn-Vernon/dp/0134434420
³http://www.amazon.com/Building-Microservices-Sam-Newman/dp/1491950358
⁴http://www.amazon.com/Domain-Driven-Design-Reference-Definitions-Summaries/dp/1457501198
⁵http://www.amazon.com/Implementing-Domain-Driven-Design-Vaughn-Vernon-ebook/dp/B00BCLEBN8
⁶http://www.amazon.com/Enterprise-Integration-Patterns-Designing-Addison-Wesley-ebook/dp/B007MQLL4E
⁷http://www.amazon.com/NoSQL-Distilled-Emerging-Polyglot-Persistence/dp/0321826620
⁸http://www.amazon.com/Clean-Code-Handbook-Software-Craftsmanship/dp/0132350882
⁹https://www.amazon.com/xUnit-Test-Patterns-Refactoring-Code/dp/0131495054
¹⁰http://www.amazon.com/Applying-Domain-Driven-Design-Patterns-Examples/dp/0321268202
¹¹http://www.amazon.com/Domain-Driven-Design-Tackling-Complexity-Software/dp/0321125215
¹²http://www.amazon.com/Patterns-Enterprise-Application-Architecture-Martin-ebook/dp/B000OZ0NAI
¹³http://www.amazon.com/Software-Development-Principles-Patterns-Practices/dp/0135974445
¹⁴http://www.amazon.com/Test-Driven-Development-Kent-Beck/dp/0321146530

53

https://leanpub.com/introducing_eventstorming
http://www.amazon.com/Domain-Driven-Design-Distilled-Vaughn-Vernon/dp/0134434420
http://www.amazon.com/Building-Microservices-Sam-Newman/dp/1491950358
http://www.amazon.com/Domain-Driven-Design-Reference-Definitions-Summaries/dp/1457501198
http://www.amazon.com/Implementing-Domain-Driven-Design-Vaughn-Vernon-ebook/dp/B00BCLEBN8
http://www.amazon.com/Enterprise-Integration-Patterns-Designing-Addison-Wesley-ebook/dp/B007MQLL4E
http://www.amazon.com/NoSQL-Distilled-Emerging-Polyglot-Persistence/dp/0321826620
http://www.amazon.com/Clean-Code-Handbook-Software-Craftsmanship/dp/0132350882
https://www.amazon.com/xUnit-Test-Patterns-Refactoring-Code/dp/0131495054
http://www.amazon.com/Applying-Domain-Driven-Design-Patterns-Examples/dp/0321268202
http://www.amazon.com/Domain-Driven-Design-Tackling-Complexity-Software/dp/0321125215
http://www.amazon.com/Patterns-Enterprise-Application-Architecture-Martin-ebook/dp/B000OZ0NAI
http://www.amazon.com/Software-Development-Principles-Patterns-Practices/dp/0135974445
http://www.amazon.com/Test-Driven-Development-Kent-Beck/dp/0321146530
https://leanpub.com/introducing_eventstorming
http://www.amazon.com/Domain-Driven-Design-Distilled-Vaughn-Vernon/dp/0134434420
http://www.amazon.com/Building-Microservices-Sam-Newman/dp/1491950358
http://www.amazon.com/Domain-Driven-Design-Reference-Definitions-Summaries/dp/1457501198
http://www.amazon.com/Implementing-Domain-Driven-Design-Vaughn-Vernon-ebook/dp/B00BCLEBN8
http://www.amazon.com/Enterprise-Integration-Patterns-Designing-Addison-Wesley-ebook/dp/B007MQLL4E
http://www.amazon.com/NoSQL-Distilled-Emerging-Polyglot-Persistence/dp/0321826620
http://www.amazon.com/Clean-Code-Handbook-Software-Craftsmanship/dp/0132350882
https://www.amazon.com/xUnit-Test-Patterns-Refactoring-Code/dp/0131495054
http://www.amazon.com/Applying-Domain-Driven-Design-Patterns-Examples/dp/0321268202
http://www.amazon.com/Domain-Driven-Design-Tackling-Complexity-Software/dp/0321125215
http://www.amazon.com/Patterns-Enterprise-Application-Architecture-Martin-ebook/dp/B000OZ0NAI
http://www.amazon.com/Software-Development-Principles-Patterns-Practices/dp/0135974445
http://www.amazon.com/Test-Driven-Development-Kent-Beck/dp/0321146530

8. Appendix A: Hexagonal
Architecture with PHP

Article published in the php|architect magazine. June 2014. Carlos Buenosvinos (@buenosvinos).

8.1 Introduction

With the rise of Domain-Driven Design (DDD), architectures promoting domain centric designs
are becoming more popular. This is the case with Hexagonal Architecture, also known as Ports
and Adapters, that seems to have being rediscovered just now by PHP developers. Invented in
2005 by Alistair Cockburn, one of the Agile Manifesto authors, the Hexagonal Architecture allows
an application to be equally driven by users, programs, automated tests or batch scripts, and to be
developed and tested in isolation from its eventual run-time devices and databases. This results into
agnostic infrastructure web applications that are easier to test, write and maintain. Let’s see how to
apply it using real PHP examples.

Your company is building a brainstorming system called Idy. Users add and rate ideas so the most
interesting ones can be implemented in a company. It is Monday morning, another sprint is starting
and you are reviewing some user stories with your team and your Product Owner. “As a not logged
in user, I want to rate an idea and the author should be notified by email”, that’s a really
important one, isn’t it?

8.2 First Approach

As a good developer, you decide to divide and conquer the user story, so you’ll start with the first
part, “I want to rate an idea”. After that, you will face “the author should be notified by email”. That
sounds like a plan.

In terms of business rules, rating an idea is as easy as finding the idea by its identifier in the ideas
repository, where all the ideas live, add the rating, recalculate the average and save the idea back.
If the idea does not exist or the repository is not available we should throw an exception so we can
show an error message, redirect the user or do whatever the business asks us for.

In order to execute this UseCase, we just need the idea identifier and the rating from the user. Two
integers that would come from the user request.

Your company web application is dealing with a Zend Framework 1 legacy application. As most of
companies, probably some parts of your app may be newer, more SOLID, and others may just be a

54

Appendix A: Hexagonal Architecture with PHP 55

big ball of mud. However, you know that it does not matter at all which framework you are using,
it is all about writing clean code that makes maintenance a low cost task for your company.

You’re trying to apply some Agile principles you remember from your last conference, how it was,
yeah, I remember “make it work, make it right, make it fast”. After some time working you get
something like Listing 1.

1 class IdeaController extends Zend_Controller_Action

2 {

3 public function rateAction()

4 {

5 // Getting parameters from the request

6 $ideaId = $this->request->getParam('id');

7 $rating = $this->request->getParam('rating');

8

9 // Building database connection

10 $db = new Zend_Db_Adapter_Pdo_Mysql([

11 'host' => 'localhost',

12 'username' => 'idy',

13 'password' => '',

14 'dbname' => 'idy'

15]);

16

17 // Finding the idea in the database

18 $sql = 'SELECT * FROM ideas WHERE idea_id = ?';

19 $row = $db->fetchRow($sql, $ideaId);

20 if (!$row) {

21 throw new Exception('Idea does not exist');

22 }

23

24 // Building the idea from the database

25 $idea = new Idea();

26 $idea->setId($row['id']);

27 $idea->setTitle($row['title']);

28 $idea->setDescription($row['description']);

29 $idea->setRating($row['rating']);

30 $idea->setVotes($row['votes']);

31 $idea->setAuthor($row['email']);

32

33 // Add user rating

34 $idea->addRating($rating);

35

36 // Update the idea and save it to the database

Appendix A: Hexagonal Architecture with PHP 56

37 $data = [

38 'votes' => $idea->getVotes(),

39 'rating' => $idea->getRating()

40];

41 $where['idea_id = ?'] = $ideaId;

42 $db->update('ideas', $data, $where);

43

44 // Redirect to view idea page

45 $this->redirect('/idea/'.$ideaId);

46 }

47 }

I know what readers are thinking: “Who is going to access data directly from the controller? This is
a 90’s example!”, ok, ok, you’re right. If you are already using a framework, it is likely that you are
also using an ORM. Maybe done by yourself or any of the existing ones such as Doctrine, Eloquent,
ZendDB, etc. If this is the case, you are one step further from those who have some Database
connection object but don’t count your chickens before they’re hatched.

For newbies, Listing 1 code just works. However, if you take a closer look at the Controller, you’ll
see more than business rules, you’ll also see how your web framework routes a request into your
business rules, references to the database or how to connect to it. So close, you see references to your
infrastructure.

Infrastructure is the detail that makes your business rules work. Obviously, we need some way
to get to them (API, web, console apps, etc.) and effectively we need some physical place to store
our ideas (memory, database, NoSQL, etc.). However, we should be able to exchange any of these
pieces with another that behaves in the same way but with different implementations. What about
starting with the Database access?

All those Zend_DB_Adapter connections (or straightMySQL commands if that’s your case) are asking
to be promoted to some sort of object that encapsulates fetching and persisting Idea objects. They
are begging for being a Repository.

8.3 Repositories and the Persistence Edge

Whether there is a change in the business rules or in the infrastructure, we must edit the same
piece of code. Believe me, in CS, you don’t want many people touching the same piece of code for
different reasons. Try to make your functions do one and just one thing so it is less probable having
people messing around with the same piece of code. You can learn more about this by having a
look at the Single Responsibility Principle (SRP). For more information about this principle: http:
//www.objectmentor.com/resources/articles/srp.pdf

Listing 1 is clearly this case. If we want to move to Redis or add the author notification feature, you’ll
have to update the rateActionmethod. Chances to affect aspects of the rateAction not related with

http://www.objectmentor.com/resources/articles/srp.pdf
http://www.objectmentor.com/resources/articles/srp.pdf

Appendix A: Hexagonal Architecture with PHP 57

the one updating are high. Listing 1 code is fragile. If it is common in your team to hear “If it works,
don’t touch it”, SRP is missing.

So, we must decouple our code and encapsulate the responsibility for dealing with fetching and
persisting ideas into another object. The best way, as explained before, is using a Repository.
Challenged accepted! Let’s see the results in Listing 2.

1 class IdeaController extends Zend_Controller_Action

2 {

3 public function rateAction()

4 {

5 $ideaId = $this->request->getParam('id');

6 $rating = $this->request->getParam('rating');

7

8 $ideaRepository = new IdeaRepository();

9 $idea = $ideaRepository->find($ideaId);

10 if (!$idea) {

11 throw new Exception('Idea does not exist');

12 }

13

14 $idea->addRating($rating);

15 $ideaRepository->update($idea);

16

17 $this->redirect('/idea/'.$ideaId);

18 }

19 }

20

21 class IdeaRepository

22 {

23 private $client;

24

25 public function __construct()

26 {

27 $this->client = new Zend_Db_Adapter_Pdo_Mysql([

28 'host' => 'localhost',

29 'username' => 'idy',

30 'password' => '',

31 'dbname' => 'idy'

32]);

33 }

34

35 public function find($id)

36 {

Appendix A: Hexagonal Architecture with PHP 58

37 $sql = 'SELECT * FROM ideas WHERE idea_id = ?';

38 $row = $this->client->fetchRow($sql, $id);

39 if (!$row) {

40 return null;

41 }

42

43 $idea = new Idea();

44 $idea->setId($row['id']);

45 $idea->setTitle($row['title']);

46 $idea->setDescription($row['description']);

47 $idea->setRating($row['rating']);

48 $idea->setVotes($row['votes']);

49 $idea->setAuthor($row['email']);

50

51 return $idea;

52 }

53

54 public function update(Idea $idea)

55 {

56 $data = [

57 'title' => $idea->getTitle(),

58 'description' => $idea->getDescription(),

59 'rating' => $idea->getRating(),

60 'votes' => $idea->getVotes(),

61 'email' => $idea->getAuthor(),

62];

63

64 $where = ['idea_id = ?' => $idea->getId()];

65 $this->client->update('ideas', $data, $where);

66 }

67 }

The result is nicer. The rateAction of the IdeaController is more understandable. When read, it
talks about business rules. IdeaRepository is a business concept. When talking with business guys,
they understand what an IdeaRepository is: A place where I put Ideas and get them.

A Repository “mediates between the domain and data mapping layers using a collection-like
interface for accessing domain objects.” as found in Martin Fowler’s pattern catalog.

If you are already using an ORM such as Doctrine, your current repositories extend from an
EntityRepository. If you need to get one of those repositories, you ask Doctrine EntityManager to
do the job. The resulting code would be almost the same, with an extra access to the EntityManager
in the controller action to get the IdeaRepository.

Appendix A: Hexagonal Architecture with PHP 59

At this point, we can see in the landscape one of the edges of our hexagon, the persistence
edge. However, this side is not well drawn, there is still some relationship between what an
IdeaRepository is and how it is implemented.

In order to make an effective separation between our application boundary and the infrastructure
boundary we need an additional step. We need to explicitly decouple behavior from implementation
using some sort of interface.

8.4 Decoupling Business and Persistence

Have you ever experienced the situation when you start talking to your Product Owner, Business
Analyst or Project Manager about your issues with the Database? Can you remember their faces
when explaining how to persist and fetch an object? They had no idea what you were talking about.

The truth is that they don’t care, but that’s ok. If you decide to store the ideas in a MySQL
server, Redis or SQLite it is your problem, not theirs. Remember, from a business standpoint, your
infrastructure is a detail. Business rules are not going to change whether you use Symfony or Zend
Framework, MySQL or PostgreSQL, REST or SOAP, etc.

That’s why it is important to decouple our IdeaRepository from its implementation. The easiest way
is to use a proper interface. How can we achieve that? Let’s take a look at Listing 3.

1 class IdeaController extends Zend_Controller_Action

2 {

3 public function rateAction()

4 {

5 $ideaId = $this->request->getParam('id');

6 $rating = $this->request->getParam('rating');

7

8 $ideaRepository = new MySQLIdeaRepository();

9 $idea = $ideaRepository->find($ideaId);

10 if (!$idea) {

11 throw new Exception('Idea does not exist');

12 }

13

14 $idea->addRating($rating);

15 $ideaRepository->update($idea);

16

17 $this->redirect('/idea/'.$ideaId);

18 }

19 }

20

21 interface IdeaRepository

Appendix A: Hexagonal Architecture with PHP 60

22 {

23 /**

24 * @param int $id

25 * @return null|Idea

26 */

27 public function find($id);

28

29 /**

30 * @param Idea $idea

31 */

32 public function update(Idea $idea);

33 }

34

35 class MySQLIdeaRepository implements IdeaRepository

36 {

37 // ...

38 }

Easy, isn’t it? We have extracted the IdeaRepository behaviour into an interface, renamed the
IdeaRepository into MySQLIdeaRepository and updated the rateAction to use our MySQLIdeaRepos-
itory. But what’s the benefit?

We can now exchange the repository used in the controller with any implementing the same
interface. So, let’s try a different implementation.

8.5 Migrating our Persistence to Redis

During the sprint and after talking to some mates, you realize that using a NoSQL strategy could
improve the performance of your feature. Redis is one of your best friends. Go for it and show me
your Listing 4.

1 class IdeaController extends Zend_Controller_Action

2 {

3 public function rateAction()

4 {

5 $ideaId = $this->request->getParam('id');

6 $rating = $this->request->getParam('rating');

7

8 $ideaRepository = new RedisIdeaRepository();

9 $idea = $ideaRepository->find($ideaId);

10 if (!$idea) {

11 throw new Exception('Idea does not exist');

Appendix A: Hexagonal Architecture with PHP 61

12 }

13

14 $idea->addRating($rating);

15 $ideaRepository->update($idea);

16

17 $this->redirect('/idea/'.$ideaId);

18 }

19 }

20

21 interface IdeaRepository

22 {

23 // ...

24 }

25

26 class RedisIdeaRepository implements IdeaRepository

27 {

28 private $client;

29

30 public function __construct()

31 {

32 $this->client = new \Predis\Client();

33 }

34

35 public function find($id)

36 {

37 $idea = $this->client->get($this->getKey($id));

38 if (!$idea) {

39 return null;

40 }

41

42 return unserialize($idea);

43 }

44

45 public function update(Idea $idea)

46 {

47 $this->client->set(

48 $this->getKey($idea->getId()),

49 serialize($idea)

50);

51 }

52

53 private function getKey($id)

Appendix A: Hexagonal Architecture with PHP 62

54 {

55 return 'idea:' . $id;

56 }

57 }

Easy again. You’ve created a RedisIdeaRepository that implements IdeaRepository interface and
we have decided to use Predis as a connection manager. Code looks smaller, easier and faster. But
what about the controller? It remains the same, we have just changed which repository to use, but
it was just one line of code.

As an exercise for the reader, try to create the IdeaRepository for SQLite, a file or an in-memory
implementation using arrays. Extra points if you think about howORMRepositories fit with Domain
Repositories and how ORM@annotations affect this architecture.

8.6 Decouple Business and Web Framework

We have already seen how easy it can be to changing from one persistence strategy to another.
However, the persistence is not the only edge from our Hexagon. What about how the user interacts
with the application?

Your CTO has set up in the roadmap that your team is moving to Symfony2, so when developing
new features in you current ZF1 application, we would like to make the incoming migration easier.
That’s tricky, show me your Listing 5.

1 class IdeaController extends Zend_Controller_Action

2 {

3 public function rateAction()

4 {

5 $ideaId = $this->request->getParam('id');

6 $rating = $this->request->getParam('rating');

7

8 $ideaRepository = new RedisIdeaRepository();

9 $useCase = new RateIdeaUseCase($ideaRepository);

10 $response = $useCase->execute($ideaId, $rating);

11

12 $this->redirect('/idea/'.$ideaId);

13 }

14 }

15

16 interface IdeaRepository

17 {

18 // ...

Appendix A: Hexagonal Architecture with PHP 63

19 }

20

21 class RateIdeaUseCase

22 {

23 private $ideaRepository;

24

25 public function __construct(IdeaRepository $ideaRepository)

26 {

27 $this->ideaRepository = $ideaRepository;

28 }

29

30 public function execute($ideaId, $rating)

31 {

32 try {

33 $idea = $this->ideaRepository->find($ideaId);

34 } catch(Exception $e) {

35 throw new RepositoryNotAvailableException();

36 }

37

38 if (!$idea) {

39 throw new IdeaDoesNotExistException();

40 }

41

42 try {

43 $idea->addRating($rating);

44 $this->ideaRepository->update($idea);

45 } catch(Exception $e) {

46 throw new RepositoryNotAvailableException();

47 }

48

49 return $idea;

50 }

51 }

Let’s review the changes. Our controller is not having any business rules at all. We have pushed all
the logic inside a new object called RateIdeaUseCase that encapsulates it. This object is also known
as Controller, Interactor or Application Service.

The magic is done by the execute method. All the dependencies such as the RedisIdeaRepository
are passed as an argument to the constructor. All the references to an IdeaRepository inside our
UseCase are pointing to the interface instead of any concrete implementation.

That’s really cool. If you take a look inside RateIdeaUseCase, there is nothing talking about
MySQL or Zend Framework. No references, no instances, no annotations, nothing. It is like your

Appendix A: Hexagonal Architecture with PHP 64

infrastructure does not mind. It just talks about business logic.

Additionally, we have also tuned the Exceptions we throw. Business processes also have exceptions.
NotAvailableRepository and IdeaDoesNotExist are two of them. Based on the one being thrown we
can react in different ways in the framework boundary.

Sometimes, the number of parameters that a UseCase receives can be too many. In order to organize
them, it is quite common to build a UseCase request using a Data Transfer Object (DTO) to pass
them together. Let’s see how you could solve this in Listing 6.

1 class IdeaController extends Zend_Controller_Action

2 {

3 public function rateAction()

4 {

5 $ideaId = $this->request->getParam('id');

6 $rating = $this->request->getParam('rating');

7

8 $ideaRepository = new RedisIdeaRepository();

9 $useCase = new RateIdeaUseCase($ideaRepository);

10 $response = $useCase->execute(

11 new RateIdeaRequest($ideaId, $rating)

12);

13

14 $this->redirect('/idea/'.$response->idea->getId());

15 }

16 }

17

18 class RateIdeaRequest

19 {

20 public $ideaId;

21 public $rating;

22

23 public function __construct($ideaId, $rating)

24 {

25 $this->ideaId = $ideaId;

26 $this->rating = $rating;

27 }

28 }

29

30 class RateIdeaResponse

31 {

32 public $idea;

33

34 public function __construct(Idea $idea)

Appendix A: Hexagonal Architecture with PHP 65

35 {

36 $this->idea = $idea;

37 }

38 }

39

40 class RateIdeaUseCase

41 {

42 // ...

43

44 public function execute($request)

45 {

46 $ideaId = $request->ideaId;

47 $rating = $request->rating;

48

49 // ...

50

51 return new RateIdeaResponse($idea);

52 }

53 }

The main changes here are introducing two new objects, a Request and a Response. They are not
mandatory, maybe a UseCase has no request or response. Another important detail is how you build
this request. In this case, we are building it getting the parameters from ZF request object.

Ok, but wait, what’s the real benefit? it is easier to change from one framework to other, or execute
our UseCase from another delivery mechanism. Let’s see this point.

8.7 Rating an idea using the API

During the day, your Product Owner comes to you and says: “by the way, a user should be able to
rate an idea using our mobile app. I think we will need to update the API, could you do it for this
sprint?”. Here’s the PO again. “No problem!”. Business is impressed with your commitment.

As Robert C. Martin says: “The Web is a delivery mechanism […] Your system architecture should
be as ignorant as possible about how it is to be delivered. You should be able to deliver it as a
console app, a web app, or even a web service app, without undue complication or any change to
the fundamental architecture”.

Your current API is built using Silex, the PHP micro-framework based on the Symfony2 Compo-
nents. Let’s go for it in Listing 7.

Appendix A: Hexagonal Architecture with PHP 66

1 require_once __DIR__.'/../vendor/autoload.php';

2

3 $app = new \Silex\Application();

4

5 // ... more routes

6

7 $app->get(

8 '/api/rate/idea/{ideaId}/rating/{rating}',

9 function ($ideaId, $rating) use ($app) {

10 $ideaRepository = new RedisIdeaRepository();

11 $useCase = new RateIdeaUseCase($ideaRepository);

12 $response = $useCase->execute(

13 new RateIdeaRequest($ideaId, $rating)

14);

15

16 return $app->json($response->idea);

17 }

18);

19

20 $app->run();

Is there anything familiar to you? Can you identify some code that you have seen before? I’ll give
you a clue.

1 $ideaRepository = new RedisIdeaRepository();

2 $useCase = new RateIdeaUseCase($ideaRepository);

3 $response = $useCase->execute(

4 new RateIdeaRequest($ideaId, $rating)

5);

“Man! I remember those 3 lines of code. They look exactly the same as the web application”. That’s
right, because the UseCase encapsulates the business rules you need to prepare the request, get the
response and act accordingly.

We are providing our users with another way for rating an idea; another delivery mechanism.

The main difference is where we created the RateIdeaRequest from. In the first example, it was
from a ZF request and now it is from a Silex request using the parameters matched in the route.

8.8 Console app rating

Sometimes, a UseCase is going to be executed from a Cron job or the command line. As examples,
batch processing or some testing command lines to accelerate the development.

Appendix A: Hexagonal Architecture with PHP 67

While testing this feature using the web or the API, you realize that it would be nice to have a
command line to do it, so you don’t have to go through the browser.

If you are using shell scripts files, I suggest you to check the Symfony Console component. What
would the code look like?

1 namespace Idy\Console\Command;

2

3 use Symfony\Component\Console\Command\Command;

4 use Symfony\Component\Console\Input\InputArgument;

5 use Symfony\Component\Console\Input\InputInterface;

6 use Symfony\Component\Console\Output\OutputInterface;

7

8 class VoteIdeaCommand extends Command

9 {

10 protected function configure()

11 {

12 $this

13 ->setName('idea:rate')

14 ->setDescription('Rate an idea')

15 ->addArgument('id', InputArgument::REQUIRED)

16 ->addArgument('rating', InputArgument::REQUIRED)

17 ;

18 }

19

20 protected function execute(

21 InputInterface $input,

22 OutputInterface $output

23) {

24 $ideaId = $input->getArgument('id');

25 $rating = $input->getArgument('rating');

26

27 $ideaRepository = new RedisIdeaRepository();

28 $useCase = new RateIdeaUseCase($ideaRepository);

29 $response = $useCase->execute(

30 new RateIdeaRequest($ideaId, $rating)

31);

32

33 $output->writeln('Done!');

34 }

35 }

Again those 3 lines of code. As before, the UseCase and its business logic remain untouched, we are

Appendix A: Hexagonal Architecture with PHP 68

just providing a new delivery mechanism. Congratulations, you’ve discovered the user side hexagon
edge.

There is still a lot to do. As you may have heard, a real craftsman does TDD.We have already started
our story so we must be ok with just testing after.

8.9 Testing Rating an Idea UseCase

Michael Feathers introduced a definition of legacy code as code without tests. You don’t want your
code to be legacy just born, do you?

In order to unit test this UseCase object, you decide to start with the easiest part, what happens if
the repository is not available? How can we generate such behavior? Do we stop our Redis server
while running the unit tests? No. We need to have an object that has such behavior. Let’s use amock
object in Listing 9.

1 class RateIdeaUseCaseTest extends \PHPUnit_Framework_TestCase

2 {

3 /**

4 * @test

5 */

6 public function whenRepositoryNotAvailableAnExceptionShouldBeThrown()

7 {

8 $this->setExpectedException('NotAvailableRepositoryException');

9 $ideaRepository = new NotAvailableRepository();

10 $useCase = new RateIdeaUseCase($ideaRepository);

11 $useCase->execute(

12 new RateIdeaRequest(1, 5)

13);

14 }

15 }

16

17 class NotAvailableRepository implements IdeaRepository

18 {

19 public function find($id)

20 {

21 throw new NotAvailableException();

22 }

23

24 public function update(Idea $idea)

25 {

26 throw new NotAvailableException();

Appendix A: Hexagonal Architecture with PHP 69

27 }

28 }

Nice. NotAvailableRepository has the behavior that we need and we can use it with RateIdeaUse-

Case because it implements IdeaRepository interface.

Next case to test is what happens if the idea is not in the repository. Listing 10 shows the code.

1 class RateIdeaUseCaseTest extends \PHPUnit_Framework_TestCase

2 {

3 // ...

4

5 /**

6 * @test

7 */

8 public function whenIdeaDoesNotExistAnExceptionShouldBeThrown()

9 {

10 $this->setExpectedException('IdeaDoesNotExistException');

11 $ideaRepository = new EmptyIdeaRepository();

12 $useCase = new RateIdeaUseCase($ideaRepository);

13 $useCase->execute(

14 new RateIdeaRequest(1, 5)

15);

16 }

17 }

18

19 class EmptyIdeaRepository implements IdeaRepository

20 {

21 public function find($id)

22 {

23 return null;

24 }

25

26 public function update(Idea $idea)

27 {

28

29 }

30 }

Here, we use the same strategy but with an EmptyIdeaRepository. It also implements the same
interface but the implementation always returns null regardless which identifier the find method
receives.

Appendix A: Hexagonal Architecture with PHP 70

Why are we testing these cases?, remember Kent Beck’s words: “Test everything that could possibly
break”.

Let’s carry on with the rest of the feature. We need to check a special case that is related with having
a read available repository where we cannot write to. Solution can be found in Listing 11.

1 class RateIdeaUseCaseTest extends \PHPUnit_Framework_TestCase

2 {

3 // ...

4

5 /**

6 * @test

7 */

8 public function whenUpdatingInReadOnlyAnIdeaAnExceptionShouldBeThrown()

9 {

10 $this->setExpectedException('NotAvailableRepositoryException');

11 $ideaRepository = new WriteNotAvailableRepository();

12 $useCase = new RateIdeaUseCase($ideaRepository);

13 $response = $useCase->execute(

14 new RateIdeaRequest(1, 5)

15);

16 }

17 }

18

19 class WriteNotAvailableRepository implements IdeaRepository

20 {

21 public function find($id)

22 {

23 $idea = new Idea();

24 $idea->setId(1);

25 $idea->setTitle('Subscribe to php[architect]');

26 $idea->setDescription('Just buy it!');

27 $idea->setRating(5);

28 $idea->setVotes(10);

29 $idea->setAuthor('hi@carlos.io');

30

31 return $idea;

32 }

33

34 public function update(Idea $idea)

35 {

36 throw new NotAvailableException();

37 }

Appendix A: Hexagonal Architecture with PHP 71

38 }

Ok, now the key part of the feature is still remaining. We have different ways of testing this, we can
write our own mock or use a mocking framework such as Mockery or Prophecy. Let’s choose the
first one. Another interesting exercise would be to write this example and the previous ones using
one of these frameworks.

1 class RateIdeaUseCaseTest extends \PHPUnit_Framework_TestCase

2 {

3 // ...

4

5 /**

6 * @test

7 */

8 public function whenRatingAnIdeaNewRatingShouldBeAddedAndIdeaUpdated()

9 {

10 $ideaRepository = new OneIdeaRepository();

11 $useCase = new RateIdeaUseCase($ideaRepository);

12 $response = $useCase->execute(

13 new RateIdeaRequest(1, 5)

14);

15

16 $this->assertSame(5, $response->idea->getRating());

17 $this->assertTrue($ideaRepository->updateCalled);

18 }

19 }

20

21 class OneIdeaRepository implements IdeaRepository

22 {

23 public $updateCalled = false;

24

25 public function find($id)

26 {

27 $idea = new Idea();

28 $idea->setId(1);

29 $idea->setTitle('Subscribe to php[architect]');

30 $idea->setDescription('Just buy it!');

31 $idea->setRating(5);

32 $idea->setVotes(10);

33 $idea->setAuthor('hi@carlos.io');

34

35 return $idea;

Appendix A: Hexagonal Architecture with PHP 72

36 }

37

38 public function update(Idea $idea)

39 {

40 $this->updateCalled = true;

41 }

42 }

Bam! 100% Coverage for the UseCase. Maybe, next time we can do it using TDD so the test will
come first. However, testing this feature was really easy because of the way decoupling is promoted
in this architecture.

Maybe you are wondering about this:

1 $this->updateCalled = true;

We need a way to guarantee that the update method has been called during the UseCase execution.
This does the trick. This test double object is called a spy, mocks cousin.

When to use mocks? As a general rule, use mocks when crossing boundaries. In this case, we need
mocks because we are crossing from the domain to the persistence boundary.

What about testing the infrastructure?

8.10 Testing Infrastructure

If you want to achieve 100% coverage for your whole application you will also have to test your
infrastructure. Before doing that, you need to know that those unit tests will be more coupled to
your implementation than the business ones. That means that the probability to be broken with
implementation details changes is higher. So it is a trade-off you will have to consider.

So, if you want to continue, we need to do some modifications. We need to decouple even more.
Let’s see the code in Listing 13.

1 class IdeaController extends Zend_Controller_Action

2 {

3 public function rateAction()

4 {

5 $ideaId = $this->request->getParam('id');

6 $rating = $this->request->getParam('rating');

7

8 $useCase = new RateIdeaUseCase(

9 new RedisIdeaRepository(

Appendix A: Hexagonal Architecture with PHP 73

10 new \Predis\Client()

11)

12);

13

14 $response = $useCase->execute(

15 new RateIdeaRequest($ideaId, $rating)

16);

17

18 $this->redirect('/idea/'.$response->idea->getId());

19 }

20 }

21

22 class RedisIdeaRepository implements IdeaRepository

23 {

24 private $client;

25

26 public function __construct($client)

27 {

28 $this->client = $client;

29 }

30

31 // ...

32

33 public function find($id)

34 {

35 $idea = $this->client->get($this->getKey($id));

36 if (!$idea) {

37 return null;

38 }

39

40 return $idea;

41 }

42 }

If we want to 100% unit test RedisIdeaRepository we need to be able to pass the Predis\Client as
a parameter to the repository without specifying TypeHinting so we can pass a mock to force the
code flow necessary to cover all the cases.

This forces us to update the Controller to build the Redis connection, pass it to the repository and
pass the result to the UseCase.

Now, it is all about creating mocks, test cases and having fun doing asserts.

Appendix A: Hexagonal Architecture with PHP 74

8.11 Arggg, So Many Dependencies!

Is it normal that I have to create so many dependencies by hand? No. It is common to use a
Dependency Injection component or a Service Container with such capabilities. Again, Symfony
comes to the rescue, however, you can also check PHP-DI 4 http://php-di.org/.

Let’s see the resulting code in Listing 14 after applying Symfony Service Container component to
our application.

1 class IdeaController extends ContainerAwareController

2 {

3 public function rateAction()

4 {

5 $ideaId = $this->request->getParam('id');

6 $rating = $this->request->getParam('rating');

7

8 $useCase = $this->get('rate_idea_use_case');

9 $response = $useCase->execute(

10 new RateIdeaRequest($ideaId, $rating)

11);

12

13 $this->redirect('/idea/'.$response->idea->getId());

14 }

15 }

The controller has been modified to have access to the container, that’s why it is inheriting from
a new base controller ContainerAwareController that has a get method to retrieve each of the
services contained.

1 <?xml version="1.0" ?>

2 <container xmlns="http://symfony.com/schema/dic/services"

3 xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"

4 xsi:schemaLocation="http://symfony.com/schema/dic/services

5 http://symfony.com/schema/dic/services/services-1.0.xsd">

6 <services>

7 <service

8 id="rate_idea_use_case"

9 class="RateIdeaUseCase">

10 <argument type="service" id="idea_repository" />

11 </service>

12

13 <service

http://php-di.org/

Appendix A: Hexagonal Architecture with PHP 75

14 id="idea_repository"

15 class="RedisIdeaRepository">

16 <argument type="service">

17 <service class="Predis\Client" />

18 </argument>

19 </service>

20 </services>

21 </container>

In Listing 15, you can also find the XML file used to configure the Service Container. It is really
easy to understand but if you need more information, take a look to the Symfony Service Container
Component site in http://symfony.com/doc/current/book/service_container.html

8.12 Domain Services and Notification Hexagon Edge

Are we forgetting something? “the author should be notified by email”, yeah! That’s true. Let’s see
in Listing 16 how we have updated the UseCase for doing the job.

1 class RateIdeaUseCase

2 {

3 private $ideaRepository;

4 private $authorNotifier;

5

6 public function __construct(

7 IdeaRepository $ideaRepository,

8 AuthorNotifier $authorNotifier

9)

10 {

11 $this->ideaRepository = $ideaRepository;

12 $this->authorNotifier = $authorNotifier;

13 }

14

15 public function execute(RateIdeaRequest $request)

16 {

17 $ideaId = $request->ideaId;

18 $rating = $request->rating;

19

20 try {

21 $idea = $this->ideaRepository->find($ideaId);

22 } catch(Exception $e) {

23 throw new RepositoryNotAvailableException();

http://symfony.com/doc/current/book/service_container.html

Appendix A: Hexagonal Architecture with PHP 76

24 }

25

26 if (!$idea) {

27 throw new IdeaDoesNotExistException();

28 }

29

30 try {

31 $idea->addRating($rating);

32 $this->ideaRepository->update($idea);

33 } catch(Exception $e) {

34 throw new RepositoryNotAvailableException();

35 }

36

37 try {

38 $this->authorNotifier->notify(

39 $idea->getAuthor()

40);

41 } catch(Exception $e) {

42 throw new NotificationNotSentException();

43 }

44

45 return $idea;

46 }

47 }

As you realize, we have added a new parameter for passing AuthorNotifier Service that will send
the email to the author. This is the port in the “Ports and Adapters” naming. We have also updated
the business rules in the execute method.

Repositories are not the only objects that may access your infrastructure and should be decoupled
using interfaces or abstract classes. Domain Services can too. When there is a behavior not clearly
owned by just one Entity in your domain, you should create a Domain Service. A typical pattern is
to write an abstract Domain Service that has some concrete implementation and some other abstract
methods that the adapter will implement.

As an exercise, define the implementation details for the AuthorNotifier abstract service. Options
are SwiftMailer or just plain mail calls. It is up to you.

8.13 Let’s Recap

In order to have a clean architecture that helps you create easy to write and test applications, we
can use Hexagonal Architecture. To achieve that, we encapsulate user story business rules inside a
UseCase or Interactor object. We build the UseCase request from our framework request, instantiate

Appendix A: Hexagonal Architecture with PHP 77

the UseCase and all its dependencies and then execute it. We get the response and act accordingly
based on it. If our framework has a Dependency Injection component you can use it to simplify the
code.

The same UseCase objects can be used from different delivery mechanisms in order to allow users
access the features from different clients (web, API, console, etc.)

For testing, play with mocks that behave like all the interfaces defined so special cases or error flows
can also be covered. Enjoy the good job done.

8.14 Hexagonal Architecture

In almost all the blogs and books you will find drawings about concentric circles representing
different areas of software. As Robert C. Martin explains in his “Clean Architecture” post, the outer
circle is where your infrastructure resides. The inner circle is where your Entities live. The overriding
rule that makes this architecture work is The Dependency Rule. This rule says that source code
dependencies can only point inwards. Nothing in an inner circle can know anything at all about
something in an outer circle.

8.15 Key Points

Use this approach if 100% unit test code coverage is important to your application. Also, if you want
to be able to switch your storage strategy, web framework or any other type of third-party code.
The architecture is especially useful for long-lasting applications that need to keep up with changing
requirements.

8.16 What’s Next?

If you are interested in learning more about Hexagonal Architecture and other near concepts you
should review the related URLs provided at the beginning of the article, take a look at CQRS and
Event Sourcing. Also, don’t forget to subscribe to google groups and RSS about DDD such as http:
//dddinphp.org and follow on Twitter people like @VaughnVernon, and @ericevans0.

http://dddinphp.org
http://dddinphp.org

	Table of Contents
	Foreword by Vaughn Vernon
	Foreword by Matthias Noback
	Preface
	Who Should Read This Book
	DDD and PHP Community
	Summary of Chapters
	Chapter 1: Getting Started with Domain-Driven Design
	Chapter 2: Architectural Styles
	Chapter 3: Value Objects
	Chapter 4: Entities
	Chapter 5: Domain Services
	Chapter 6: Domain Events
	Chapter 7: Modules
	Chapter 8: Aggregates
	Chapter 9: Factories
	Chapter 10: Repositories
	Chapter 11: Application
	Chapter 12: Integrating Bounded Contexts
	Appendix A: Hexagonal Architecture with PHP

	Code and Examples

	Acknowledgements
	About the Authors
	Carlos Buenosvinos
	Christian Soronellas
	Keyvan Akbary

	Value Objects
	Definition
	Value Object vs. Entity
	Currency and Money Example
	Characteristics
	Measures, Quantifies, or Describes
	Immutability
	Conceptual Whole
	Value Equality
	Replaceability
	Side-Effect-Free Behavior

	Basic Types
	Testing Value Objects
	Persisting Value Objects
	Persisting Single Value Objects
	Embedded Value with an Ad Hoc ORM
	Embedded Value (Embeddables) with Doctrine >= 2.5.*
	Embedded Value with Doctrine <= 2.4.*
	Serialized LOB and Ad Hoc ORM
	Improved Serialization with JMS Serializer

	Serialized LOB with Doctrine
	Doctrine Object Mapping Type
	Doctrine Custom Types

	Persisting a Collection of Value Objects
	Collection Serialized into a Single Column
	Collection Backed by a Join Table
	Collection Backed by a Join Table with Doctrine
	Collection Backed by a Join Table with an Ad Hoc ORM

	Collection Backed by a Database Entity

	NoSQL
	PostgreSQL JSONB and MySQL JSON Type

	Security
	Wrap-Up

	Bibliography
	Appendix A: Hexagonal Architecture with PHP
	Introduction
	First Approach
	Repositories and the Persistence Edge
	Decoupling Business and Persistence
	Migrating our Persistence to Redis
	Decouple Business and Web Framework
	Rating an idea using the API
	Console app rating
	Testing Rating an Idea UseCase
	Testing Infrastructure
	Arggg, So Many Dependencies!
	Domain Services and Notification Hexagon Edge
	Let's Recap
	Hexagonal Architecture
	Key Points
	What's Next?

